5.某教師為了分析所任教班級(jí)某將考試的成績(jī),將全班同學(xué)的成績(jī)做出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖.
分組頻數(shù)頻率
[50,60)30.06
[60,70)m0.10
[70,80)13n
[80,90)pq
[90,100]90.18
總計(jì)t1
(1)求表中t,q及圖中a的值;
(2)該教師從這次考試成績(jī)低于70分的學(xué)生中隨機(jī)抽取3人進(jìn)行面批,設(shè)X表示所抽取學(xué)生中成績(jī)低于60分的人數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

分析 (1)利用頻率計(jì)算公式、頻率分布直方圖的性質(zhì)即可得出.
(2)由表格可知:區(qū)間[50,60)中有3人,區(qū)間[60,70)中有5人.由題意可得:X=0,1,2,3.則P(X=k)=$\frac{{∁}_{3}^{k}{∁}_{5}^{3-k}}{{∁}_{8}^{3}}$,即可得出.

解答 解:(1)由表格可知:全班總?cè)藬?shù)t═$\frac{3}{0.06}$=50,m=50×0.10=5,n=$\frac{13}{50}$=0.26,3+5+13+9+p=50,解得p=20,q=$\frac{20}{50}$=0.4.a(chǎn)=$\frac{0.26}{10}$=0.026.
(2)由表格可知:區(qū)間[50,60)中有3人,區(qū)間[60,70)中有5人.
由題意可得:X=0,1,2,3.則P(X=k)=$\frac{{∁}_{3}^{k}{∁}_{5}^{3-k}}{{∁}_{8}^{3}}$,可得P(X=0)=$\frac{10}{56}$,P(X=1)=$\frac{30}{56}$,P(X=2)=$\frac{15}{56}$,P(X=3)=$\frac{1}{56}$.
隨機(jī)變量X的分布列如下:

 X 0 1 2 3
 P $\frac{10}{56}$ $\frac{30}{56}$ $\frac{15}{56}$ $\frac{1}{56}$
數(shù)學(xué)期望EX=0×$\frac{10}{56}$+1×$\frac{30}{56}$+2×$\frac{15}{56}$+3×$\frac{1}{56}$=$\frac{9}{8}$.

點(diǎn)評(píng) 本小題主要考查頻率分布直方圖的性質(zhì)、超幾何分布列及其數(shù)學(xué)期望,考查了推理能力與就你死了,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知拋物線M:y2=3x,過(guò)點(diǎn)(3,0)的直線l交拋物線M于A,B兩點(diǎn),則∠AOB=90°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知在平行四邊形ABCD中,點(diǎn)E是邊BC的中點(diǎn),在邊AB上任取一點(diǎn)F,則△ADF與△BFE的面積之比不于1的概率是$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若x,y滿足約束條件$\left\{\begin{array}{l}2x-y-1≤0\\ 2x+y-7≤0\\ x≥1\end{array}\right.$則$\frac{y}{x+1}$的取值范圍為$[{\frac{1}{2},\frac{5}{2}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.對(duì)于二次函數(shù)y=-4x2+8x-3,
(1)若x∈R
①指出圖象的開(kāi)口方向、對(duì)稱軸方程、頂點(diǎn)坐標(biāo);
②求函數(shù)的最大值或最小值;
③分析函數(shù)的單調(diào)性.
(2)若x∈[-1,5),試確定y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)α,β是兩個(gè)不同的平面,l是一條直線,以下命題正確的是( 。
A.若l⊥α,α⊥β,則 l?βB.若l∥α,α∥β,則 l?β
C.若l⊥α,α∥β,則 l⊥βD.若l∥α,α⊥β,則l⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{1}{\sqrt{x+2}}$+lg(3-x)的定義域?yàn)榧螦,集合B={x|1-m<x<3m-1}.
(1)求集合A,
(2)若A∩B=B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且a>b,a>c.△ABC的外接圓半徑為1,$a=\sqrt{3}$,若邊BC上一點(diǎn)D滿足BD=2DC,且∠BAD=90°,則△ABC的面積為$\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.平面內(nèi)到定點(diǎn)F(0,1)和定直線l:y=-1的距離之和等于4的動(dòng)點(diǎn)的軌跡為曲線C.關(guān)于曲線C的幾何性質(zhì),給出下列三個(gè)結(jié)論:
①曲線C關(guān)于y軸對(duì)稱;
②若點(diǎn)P(x,y)在曲線C上,則|y|≤2;
③若點(diǎn)P在曲線C上,則1≤|PF|≤4.
其中,所有正確結(jié)論的序號(hào)是①②③.

查看答案和解析>>

同步練習(xí)冊(cè)答案