如圖,P是直線l上任意一點(diǎn),A是直線l外一點(diǎn),它關(guān)于直線l的對(duì)稱點(diǎn)為A′,是直線l的一個(gè)方向向量,且

                   

A.                                                        B.       

C.                                             D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•威海二模)如圖,在平面直角坐標(biāo)系xoy中,設(shè)點(diǎn)F(0,p)(p>0),直線l:y=-p,點(diǎn)p在直線l上移動(dòng),R是線段PF與x軸的交點(diǎn),過R、P分別作直線l1、l2,使l1⊥PF,l2⊥l l1∩l2=Q.
(Ⅰ)求動(dòng)點(diǎn)Q的軌跡C的方程;
(Ⅱ)在直線l上任取一點(diǎn)M做曲線C的兩條切線,設(shè)切點(diǎn)為A、B,求證:直線AB恒過一定點(diǎn);
(Ⅲ)對(duì)(Ⅱ)求證:當(dāng)直線MA,MF,MB的斜率存在時(shí),直線MA,MF,MB的斜率的倒數(shù)成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江西省高二第二次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題14分) 如圖,在平面直角坐標(biāo)系xoy中,設(shè)點(diǎn)F(0, p)(p>0), 直線l : y= -p, 點(diǎn)P在直線l上移動(dòng),R是線段PF與x軸的交點(diǎn), 過R、P分別作直線、,使, .

 (1)求動(dòng)點(diǎn)Q的軌跡C的方程;

(2)在直線l上任取一點(diǎn)M做曲線C的兩條切線,設(shè)切點(diǎn)為A、B,求證:直線AB恒過一定點(diǎn);

(3)對(duì)(2)求證:當(dāng)直線MA, MF, MB的斜率存在時(shí),直線MA, MF, MB的斜率的倒數(shù)成等差數(shù)列.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江西省高二第二次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題14分)如圖,在平面直角坐標(biāo)系xoy中,設(shè)點(diǎn)F(0, p)(p>0), 直線l : y= -p, 點(diǎn)P在直線l上移動(dòng),R是線段PF與x軸的交點(diǎn), 過R、P分別作直線、,使 .

 (1) 求動(dòng)點(diǎn)的軌跡的方程;

(2)在直線上任取一點(diǎn)做曲線的兩條切線,設(shè)切點(diǎn)為、,求證:直線恒過一定點(diǎn).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系xoy中,設(shè)點(diǎn)F(0,p)(p>0),直線l:y=-p,點(diǎn)p在直線l上移動(dòng),R是線段PF與x軸的交點(diǎn),過R、P分別作直線l1、l2,使l1⊥PF,l2⊥l l1∩l2=Q.
(Ⅰ)求動(dòng)點(diǎn)Q的軌跡C的方程;
(Ⅱ)在直線l上任取一點(diǎn)M做曲線C的兩條切線,設(shè)切點(diǎn)為A、B,求證:直線AB恒過一定點(diǎn);
(Ⅲ)對(duì)(Ⅱ)求證:當(dāng)直線MA,MF,MB的斜率存在時(shí),直線MA,MF,MB的斜率的倒數(shù)成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省衢州市江山實(shí)驗(yàn)中學(xué)高二(下)5月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系xoy中,設(shè)點(diǎn)F(0,p)(p>0),直線l:y=-p,點(diǎn)p在直線l上移動(dòng),R是線段PF與x軸的交點(diǎn),過R、P分別作直線l1、l2,使l1⊥PF,l2⊥l l1∩l2=Q.
(Ⅰ)求動(dòng)點(diǎn)Q的軌跡C的方程;
(Ⅱ)在直線l上任取一點(diǎn)M做曲線C的兩條切線,設(shè)切點(diǎn)為A、B,求證:直線AB恒過一定點(diǎn);
(Ⅲ)對(duì)(Ⅱ)求證:當(dāng)直線MA,MF,MB的斜率存在時(shí),直線MA,MF,MB的斜率的倒數(shù)成等差數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案