5.若x,y滿足約束條件$\left\{\begin{array}{l}x≤2\\ y≤2\\ x+y≥1\end{array}\right.$,則$z=\frac{y}{x+1}$的取值范圍是[-$\frac{1}{3}$,+∞).

分析 作出不等式組對應(yīng)的平面區(qū)域,根據(jù)斜率的幾何意義利用數(shù)形結(jié)合進(jìn)行求解即可.

解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
$z=\frac{y}{x+1}$的幾何意義是區(qū)域內(nèi)的點(diǎn)到定點(diǎn)D(-1,0)的斜率,
由圖象知CD的斜率最小,
由$\left\{\begin{array}{l}{x=2}\\{x+y=1}\end{array}\right.$得$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$,即C(2,-1),
則CD的斜率z=$\frac{-1}{2+1}$=-$\frac{1}{3}$,
即$z=\frac{y}{x+1}$的取值范圍是[-$\frac{1}{3}$,+∞),
故答案為:[-$\frac{1}{3}$,+∞)

點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,利用直線斜率的幾何意義以及數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知A(1,1)、B(-2,3),直線y=ax-1與線段AB相交,則實(shí)數(shù)a的范圍是(-∞,-2]∪[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在等差數(shù)列中{an}中,a2=2,a4+a5=12,則a7=( 。
A.5B.8C.10D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若等差數(shù)列{an}中,滿足a4+a10+a16=18,則S19=114.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)f(x)是定義在R上的周期為3的周期函數(shù),如圖表示該函數(shù)在區(qū)間(-2,1]上的圖象,則f(2011)+f(2013)=( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=(2-a)(x-1)-2lnx
(1)當(dāng)a=1時,求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在(0,$\frac{1}{2}$)上無零點(diǎn),求a最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知x與y之間的一組數(shù)據(jù):(1,1),(2,3),(2,5),(3,7),則y與x的線性回歸方程必過點(diǎn)(2,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.三棱錐S-ABC中,底面ABC為等腰直角三角形,BA=BC=2,側(cè)棱$SA=SC=2\sqrt{3}$,$SB=2\sqrt{2}$,則此三棱錐外接球的表面積為(  )
A.16πB.12πC.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在數(shù)列{an}中,a1=2,a2=10,且${a_{n+2}}={a_{n+1}}-{a_n}(n∈{N^*})$,則a4=-2,數(shù)列{an}的前2016項(xiàng)和為0.

查看答案和解析>>

同步練習(xí)冊答案