20.函數(shù)f(x)=$\left\{\begin{array}{l}lg|x-2|(x≠2)\\ 1(x=2)\end{array}\right.$若關(guān)于x的方程[f(x)]2+b•f(x)+c=0恰有5個不同的實數(shù)解x1、x2、x3、x4、x5,則f(x1+x2+x3+x4+x5)等于( 。
A.0B.1C.lg4D.3lg2

分析 分情況討論,當(dāng)x=2時,f(x)=1,則由f2(x)+bf(x)+c=0得1+b+c=0,求出x1=2;當(dāng)x>2時,f(x)=lg(x-2),由f2(x)+bf(x)+c=0得[lg(x-2)]2+blg(x-2)-b-1=0,解得lg(x-2)=1,或lg(x-2)=b,從而求出x2和x3;當(dāng)x<2時,f(x)=lg(2-x),由f2(x)+bf(x)+c=0得[lg(2-x)]2+blg(2-x)-b-1=0),解得lg(2-x)=1,或lg(2-x)=b,從而求出x4和x5,5個不同的實數(shù)解x1、x2、x3、x4、x5都求出來后,就能求出f(x1+x2+x3+x4+x5)的值.

解答 解:當(dāng)x=2時,f(x)=1,則由f2(x)+bf(x)+c=0得1+b+c=0.
∴x1=2,c=-b-1.
當(dāng)x>2時,f(x)=lg(x-2),
由f2(x)+bf(x)+c=0,
得[lg(x-2)]2+blg(x-2)-b-1=0,
解得lg(x-2)=-b-1,x2=12或lg(x-2)=-b-1,x3=2+10-b-1
當(dāng)x<2時,f(x)=lg(2-x),由f2(x)+bf(x)+c=0得[lg(2-x)]2+blg(2-x)-b-1=0,
解得lg(2-x)=1,x4=-8或lg(2-x)=b,x5=2-10-b-1
∴f(x1+x2+x3+x4+x5)=f(2+12+2+10b-8+2-10b)=f(10)=lg|10-2|=lg8=3lg2.
故選D

點評 這是一道比較難的對數(shù)函數(shù)綜合題,解題時按照題設(shè)條件求出關(guān)于x的方程f2(x)+bf(x)+c=0的5個不同的實數(shù)解x1、x2、x3、x4、x5,然后再求出f(x1+x2+x3+x4+x5)的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若變量x,y滿足$\left\{\begin{array}{l}{y≤1}\\{x+y≥0}\\{x-y-2≤0}\end{array}\right.$,則z=x-2y的最大值為( 。
A.2B.1C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知奇函數(shù)f(x),且f(a)=11,則f(-a)=-11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知全集U=R,集合A={x|x2-x-2≥0},B={x|log3x<1,則(∁UA)∩B=(  )
A.[2,3)B.[-1,2)C.(0,1)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)$f(x)=2msinx-2{cos^2}x+\frac{m^2}{2}-4m+3$,且函數(shù)f(x)的最小值為-7,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)$f(x)=\frac{1}{a}-\frac{1}{x};(a>0)$.
(1)證明f(x)在(0,+∞)上單調(diào)遞增;
(2)是否存在實數(shù)a使得f(x)的定義域、值域都是$[{\frac{1}{2},2}]$,若存在求出a的值,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.雙曲線$\frac{{x}^{2}}{m}-\frac{{y}^{2}}{4}$=1的焦距為6,則m的值是( 。
A.6或2B.5C.1或9D.3或5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)$f(x)=\frac{1}{x+1}+2sinπx({-5≤x≤2且x≠-1})$的所有零點之和等于(  )
A.-10B.-8C.-6D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.扇形的周長是20,當(dāng)扇形的圓心角為2弧度時扇形的面積最大.

查看答案和解析>>

同步練習(xí)冊答案