15.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩個長軸頂點分別為A、B,M為橢圓上一點(異于A、B),則有結(jié)論:KMA•KMB=-$\frac{^{2}}{{a}^{2}}$,現(xiàn)在有雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1上的點A(-3,0).點B(3,0).P為雙曲線一點(P不在x軸上)那么KPA•KPB=
A.$\frac{16}{9}$B.$\frac{9}{16}$C.-$\frac{16}{9}$D.-$\frac{9}{16}$

分析 類比橢圓的性質(zhì),可得KMA•KMB=$\frac{^{2}}{{a}^{2}}$,即可得出結(jié)論.

解答 解:類比橢圓的性質(zhì),可得KMA•KMB=$\frac{^{2}}{{a}^{2}}$,
∵雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1,
∴KMA•KMB=$\frac{16}{9}$,
故選A.

點評 本題考查橢圓、雙曲線的性質(zhì),考查類比推理,正確類比是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知定義在R上的函數(shù)f(x)=asinωx+bcosωx(ω>0)的周期為π,且對一切x∈R,都有f(x)≤f($\frac{π}{12}$)=8.
(1)求函數(shù)f(x)的表達(dá)式;
(2)若g(x)=f($\frac{π}{6}$-x),求函數(shù)g(x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖所示,AB=AC=1,DC=2BD,DE=EA,cos∠BAC=$\frac{1}{3}$,則BE=( 。
A.$\frac{59}{108}$B.$\frac{43}{108}$C.$\frac{\sqrt{177}}{18}$D.$\frac{\sqrt{129}}{18}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.圓O為△ABC的外接圓,半徑為2,若$\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AO}$,且|$\overrightarrow{OA}$=|$\overrightarrow{AC}$|,則$\overrightarrow{BA}•\overrightarrow{BO}$=6|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知四邊形ABCD,AB⊥AC,∠ACB=30°,∠ACD=15°,∠DBC=30°,且AB=1,則CD的長為$\sqrt{6}-\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=|x-a|,其中a>0.
(1)當(dāng)a=1時,求不等式f2(x)≤2的解集;
(2)已知函數(shù)g(x)=f(2x+a)+2f(x)的最小值為4,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知點F(0,1)為拋物線x2=2py的焦點.
(1)求拋物線C的方程;
(2)點A、B、C是拋物線上三點且$\overrightarrow{FA}$+$\overrightarrow{FB}$+$\overrightarrow{FC}$=$\overrightarrow{0}$,求△ABF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)過點($\sqrt{2}$,1),且以橢圓短軸的兩個端點和一個焦點為頂點的三角形是等腰直角三角形.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)M(x,y)是橢圓C上的動點,P(p,0)是x軸上的定點,求|MP|的最小值及取最小值時點M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知冪函數(shù)f(x)的圖象過(-$\sqrt{2}$,2),一次函數(shù)g(x)的圖象過A(-1,1),B(3,9).
(Ⅰ)求函數(shù)f(x)和g(x)的解析式;
(Ⅱ)當(dāng)x為何值時,①f(x)>g(x);②f(x)=g(x);③f(x)<g(x).

查看答案和解析>>

同步練習(xí)冊答案