曲線f(x)=xex在點(diǎn)(1,f(1))處的切線方程為(  )
分析:求函數(shù)的導(dǎo)數(shù),然后得到切線斜率,然后代入點(diǎn)斜式方程即可求出切線方程.
解答:解:函數(shù)的導(dǎo)數(shù)為f'(x)=ex+xex,
則f'(1)=e+e=2e,即切線斜率k=f'(1)=2e,
又f(1)=e,即切點(diǎn)坐標(biāo)為(1,e).
所以切線方程為y-e=2e(x-1),即切線方程為2ex-y-e=0.
故選A.
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)的幾何意義以及切線方程的求法,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

11、已知函數(shù)f(x)=xex(e為自然對(duì)數(shù)的底).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=xex,求:
(I)曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(Ⅱ)函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線f(x)=xex在點(diǎn)(1,f(1))處的切線方程為(  )
A.2ex-y-e=0B.2ex-y+e=0
C.(1+e) x-y-1=0D.ex-y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省寧德市部分達(dá)標(biāo)中學(xué)高二(下)期末數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

曲線f(x)=xex在點(diǎn)(1,f(1))處的切線方程為( )
A.2ex-y-e=0
B.2ex-y+e=0
C.(1+e) x-y-1=0
D.ex-y=0

查看答案和解析>>

同步練習(xí)冊(cè)答案