13.在△ABC中,a+b=5,ab=2,C=60°,求c.

分析 由余弦定理可知c2=a2+b2-2abcosC,利用完全平方公式即可求得c的值.

解答 解:由韋達(dá)定理可知:c2=a2+b2-2abcosC,
∴c2=(a+b)2-2ab-2abcosC=25-2×2-2×2×$\frac{1}{2}$=19,
c=$\sqrt{19}$,
∴c的值為$\sqrt{19}$.

點(diǎn)評 本題考查余弦定理的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)是定義在實(shí)數(shù)集R上的奇函數(shù),且在區(qū)間(-∞,0]上是單調(diào)遞增,若f(1)+f(lgx-2)<0,則x的取值范圍為(0,10).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.甲、乙、丙三名同學(xué)在未經(jīng)商量的情況下去書店購買語數(shù)外理化生六科的教輔資料,每人都只買一本教輔資料書,則三名同學(xué)所買資料書各不相同的概率( 。
A.$\frac{5}{9}$B.$\frac{5}{54}$C.$\frac{40}{243}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.方程$y=\frac{|x|}{x^2}$表示的曲線是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知θ∈[0,2π],而sinθ、cosθ是方程x2-kx+k+1=0的兩實(shí)數(shù)根,求k和θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知點(diǎn)A(1,2)和直線l:x=-$\frac{1}{2}$,則拋物線y2=2x上一動點(diǎn)P到點(diǎn)A的距離和直線l的距離之和的最小值是$\frac{{\sqrt{17}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.畫出函數(shù)y=2x-1-1圖象,并求定義域與值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)F為橢圓$\frac{x^2}{9}$+$\frac{y^2}{8}$=1右焦點(diǎn),且橢圓上至少有21個不同的點(diǎn)Pi(i=1,2,3,…),使|FP1|,|FP2|,|FP3|…組成公差為d的等差數(shù)列,則d的取值范圍是$[-\frac{1}{10},0)∪(0,\frac{1}{10}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)=x+$\frac{1}{x}$在其定義域上為( 。
A.奇函數(shù)B.偶函數(shù)C.非奇非偶函數(shù)D.其他

查看答案和解析>>

同步練習(xí)冊答案