19.設函數(shù)f(x)=axlnx(a≠0),若f′(e)=2,則f(e)的值為( 。
A.$\frac{e}{2}$B.1C.eD.2e

分析 先求導,再代值求出a的值,即可得到f(x),再代值求出f(e)的值.

解答 解:∵f(x)=axlnx(a≠0),
∴f′(x)=a(1+lnx),
∵f′(e)=2,
∴a(1+lne)=2,
∴a=1,
∴f(x)=xlnx,
∴f(e)=elne=e,
故選:C

點評 本題考查了導數(shù)的運算和函數(shù)值的問題,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

9.已知數(shù)列{an}滿足an=(2n-1)2n,其前n項和Sn=6+(2n-3)•2n+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.寫出下列命題的否定并判斷其真假:
(1)p:不論m取何實數(shù)值,方程x2+mx-1=0必有實數(shù)根;
(2)p:有的三角形的三條邊相等;
(3)p:菱形的對角線互相垂直;
(4)p:存在x∈N,x2-2x+1≤0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.用0、1、2、3、4這五個數(shù)字,可以組成多少個滿足下列條件的沒有重復數(shù)字的五位數(shù)?
(1)奇數(shù);
(2)比21034大的偶數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知f(3x+2)=9x2+3x-1,求f(x)( 。
A.f(x)=3x2-x-1B.f(x)=81x2+127x+53C.f(x)=x2-3x+1D.f(x)=6x2+2x+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.函數(shù)y=$\sqrt{tanx-1}$的定義域為(  )
A.(0,$\frac{π}{2}}$)B.(0,$\frac{π}{4}}$)C.($\frac{π}{4}$,$\frac{π}{2}}$)D.[kπ+$\frac{π}{4}$,kπ+$\frac{π}{2}}$)(k∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(x,1),當($\overrightarrow{a}$+2$\overrightarrow$)⊥(2$\overrightarrow{a}$-$\overrightarrow$)時,則x的值為-2或$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知集合A={x|x≥4},B={x|y=ln(2x-1)},則(∁RA)∩B=( 。
A.[4,+∞)B.[0,$\frac{1}{2}}$]C.($\frac{1}{2}$,4)D.(1,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知集合A={x|y=$\sqrt{3-2x-{x^2}}$},B={x|x2-2x+1-m2≤0}.
(1)若m=3,求A∩B;
(2)若m>0,A⊆B,求m的取值范圍.

查看答案和解析>>

同步練習冊答案