A. | x1<-2 | B. | x2<0 | C. | 0<x2<1 | D. | x3>2 |
分析 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)求函數(shù)的極值,再根據(jù)f (x)的三個零點(diǎn)為x1,x2,x3,且x1<x2<x3,求得各個零點(diǎn)所在的區(qū)間,從而得出結(jié)論.
解答 解:∵函數(shù)f (x)=x3-3x+a,0<a<1,
∴f′(x)=3x2-3=3(x+1)(x-1),
令f′(x)=0,可得 x=±1.
∵當(dāng)x<-1時(shí),f′(x)>0;
在(-1,1)上,f′(x)<0;
在(1,+∞)上,f′(x)>0.
故函數(shù)在(-∞,-1)上是增函數(shù),在(-1,1)上是減函數(shù),在(1,+∞)上是增函數(shù).
故f(-1)是極大值,f(1)是極小值.
再由f(x)的三個零點(diǎn)為x1,x2,x3,且x1<x2<x3,可得 x1<-1,-1<x2<1,x3>1.
根據(jù)f(0)=a>0,且f(1)=a-2<0,可得0<x2<1;
故選:C.
點(diǎn)評 本題主要考查函數(shù)的零點(diǎn)的定義,函數(shù)的零點(diǎn)與方程的根的關(guān)系,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)求函數(shù)的極值,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
單價(jià)x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
銷量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 15 | B. | 16 | C. | 17 | D. | $\frac{97}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0<a<1 | B. | 0≤a≤1 | C. | a<0或a>1 | D. | a≤0或a≥1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{2}}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 2 | C. | $\frac{2}{3}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com