若函數(shù)f(x)=sin(x+φ)(0<φ<π)是偶函數(shù),則φ=
 
考點:正弦函數(shù)的奇偶性
專題:三角函數(shù)的圖像與性質
分析:根據(jù)三角函數(shù)的圖象和性質,即可得到結論.
解答: 解:若函數(shù)f(x)=sin(x+φ)(0<φ<π)是偶函數(shù),
則φ=
π
2

故答案為:
π
2
點評:本題主要考查三角函數(shù)的圖象和性質,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知直線l的參數(shù)方程為
x=-1+t
y=2+t
(t為參數(shù)),在直角坐標系xOy中以O為極點,x軸正半軸為極軸建立坐標系.圓C的極坐標方程分別為ρ2=4
2
ρsin(θ-
π
4
)-6
(Ⅰ)求直線l與圓C的直角坐標方程;
(Ⅱ)設A(-1,2),P,Q為直線l與圓C的兩個交點,求|PA|+|AQ|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y滿足約束條件
x2-y2≤0
x-y+2≥0
y≥0
,則目標函數(shù)z=2x+y的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設直線l:y=g(x),曲線S:y=F(x).若直線l與曲線S同時滿足下列兩個條件:①直線l與曲線S相切且至少有兩個切點;②對任意x∈R都有g(x)≥F(x).則稱直線l為曲線S的“上夾線”.
(1)曲線y=sinx的“上夾線”方程為
 

(2)曲線S:y=mx-nsinx(n>0)的“上夾線”的方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,以O為極點,Ox為極軸,則圓ρ=3cosθ被直線
x=2+2t
y=1+4t
(t是參數(shù))截得的弦長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在極坐標系中,曲線C1:ρ(cosθ+sinθ)=1與曲線C2:ρ=a(a>0)的一個交點在極軸上,則a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的通項為an=(-1)n(2n-1)•cos
2
+1前n項和為Sn,則S60=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設極點與坐標原點重合,極軸與x軸正半軸重合,已知直線l的極坐標方程是:ρcosθ=a(a∈R),圓C的參數(shù)方程是
x=-1+cosθ
y=sinθ
(θ為參數(shù)),若圓C關于直線l對稱,則a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某程序框圖如圖所示,當輸出y值為-6時,則輸出x的值為( 。
A、64B、32C、16D、8

查看答案和解析>>

同步練習冊答案