6.設(shè)拋物線y2=2px(p>0)的焦點為F、準(zhǔn)線為l,過拋物線上一點A作l的垂線,垂足為B,設(shè)C($\frac{5}{2}$p,0),AF與BC相交于點E,若|CF|=2|AF|,且△ACE的面積為3,則p的值是( 。
A.3B.3$\sqrt{2}$C.$\sqrt{3}$D.2$\sqrt{3}$

分析 化簡參數(shù)方程為普通方程,求出F與l的方程,然后求解A的坐標(biāo),利用三角形的面積列出方程,求解即可.

解答 解:拋物線y2=2px(p>0)焦點為F($\frac{p}{2}$,0),如圖:過拋物線上一點A作l的垂線,垂足為B,
設(shè)C($\frac{5}{2}$p,0),AF與BC相交于點E.
|CF|=2|AF|,
|CF|=2p,|AB|=|AF|=p,A($\frac{1}{2}$p,p),
∵$\frac{AE}{EF}$=$\frac{AB}{CF}$=$\frac{1}{2}$
∴可得 $\frac{1}{3}$S△ACF=S△ACE
∵△ACE的面積為3,即:$\frac{1}{3}$×$\frac{1}{2}$×2p×p=3,
解得p=3.
故選:A.

點評 本題考查拋物線的簡單性質(zhì)的應(yīng)用,三角形面積的計算,考查分析問題解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)y=sin(2ωx+φ)(ω>0,0<φ<π)的最小正周期為π,且函數(shù)圖象關(guān)于點(-$\frac{π}{6}$,0)對稱,則函數(shù)的解析式為( 。
A.y=sin(4x+$\frac{π}{3}$)B.y=sin(2x+$\frac{2π}{3}$)C.y=sin(2x+$\frac{π}{3}$)D.y=sin(4x+$\frac{2π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)f(x)=cos2x-sin2x+2sinxcosx(x∈R)的最小正周期為π,單調(diào)遞減區(qū)間為$[kπ+\frac{π}{8},kπ+\frac{5π}{8}](k∈Z)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)函數(shù)f(x)=x4+x-1,則f′(1)+f′(-1)等于( 。
A.-2B.-4C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若x,y滿足$\left\{\begin{array}{l}{y≤1}\\{x-y-1≤0}\\{x+y-1≥0}\end{array}\right.$,則z=$\sqrt{3}$x+y的最大值為2$\sqrt{3}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=(x+a)ex,已知曲線y=f(x)在點(1,f(1))處切線與直線ex-y=0平行.
(1)求a的值;
(2)求y=f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={x|-1≤x≤2},B={x|x-4≤0},則A∪B=(  )
A.{x|-1≤x<4}B.{x|2≤x<4}C.{x|x≥-1}D.{x|x≤4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某單位為了了解辦公樓的用電量y(度)與氣溫x(℃)之間的關(guān)系,隨機統(tǒng)計了四個工作日的用電量與當(dāng)天平均氣溫如表:
氣溫(℃)181310-1
用電量(度)24343864
(1)由表中數(shù)據(jù)求y與x的線性回歸方程(系數(shù)$\stackrel{∧}$取整數(shù));
(2)求貢獻率R2的值(保留小數(shù)點后兩位),并做出解釋.
附計算公式:$\widehat$$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}$,$\overline{y}$=$\widehat$$\overline{x}$+$\widehat{a}$,R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-{\widehat{y}}_{i})^{2}}{\sum_{i=1}^{n}({y}_{i}-\widehat{y})^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.記函數(shù)的f(x)=$\sqrt{{x}^{2}-1}$定義域為A,不等式(x-a-1)(2a-x)>0的解集為B.
(1)求A;
(2)若A∩B=B,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案