9.根據(jù)如圖的程序框圖,當(dāng)輸入x為2017時(shí),輸出的y為28,則判斷框中的條件可以是( 。
A.x≥0?B.x≥1?C.x≥-1?D.x≥-3?

分析 根據(jù)已知的程序框圖可得,該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量y的值,模擬程序的運(yùn)行過程,可得答案.

解答 解:當(dāng)輸入的x為2017時(shí),
第1次執(zhí)行循環(huán)體后,x=2015,輸出y=3-2015+1;
第2次執(zhí)行循環(huán)體后,x=2013,輸出y=3-2013+1;
第3次執(zhí)行循環(huán)體后,x=2011,輸出y=3-2011+1;

第1007次執(zhí)行循環(huán)體后,x=3,輸出y=3-3+1;
第1008次執(zhí)行循環(huán)體后,x=1,輸出y=3-1+1;
第1009次執(zhí)行循環(huán)體后,x=-1,輸出y=31+1=4;
第1010次執(zhí)行循環(huán)體后,x=-3,輸出y=33+1=28;
此時(shí)不滿足x≥-1,輸出y=28,
故選:C.

點(diǎn)評 本題考查的知識點(diǎn)是程序框圖,當(dāng)循環(huán)次數(shù)不多,或有規(guī)律可循時(shí),可采用模擬程序法進(jìn)行解答,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知復(fù)數(shù)z=$\frac{3-i}{1+i}$,其中i為虛數(shù)單位,則復(fù)數(shù)z的模是$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,以F1F2為直徑的圓與雙曲線左支的一個(gè)交點(diǎn)為P,若以O(shè)F1(O為坐標(biāo)原點(diǎn))為直徑的圓與PF2相切,則雙曲線C的離心率為(  )
A.$\sqrt{2}$B.$\frac{-3+6\sqrt{2}}{4}$C.$\sqrt{3}$D.$\frac{3+6\sqrt{2}}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某籃球隊(duì)與其他6支籃球隊(duì)依次進(jìn)行6場比賽,每場均決出勝負(fù),設(shè)這支籃球隊(duì)與其他籃球隊(duì)比賽勝場的事件是獨(dú)立的,并且勝場的概率是$\frac{1}{3}$.
(1)求這支籃球隊(duì)首次勝場前已經(jīng)負(fù)了兩場的概率;
(2)求這支籃球隊(duì)在6場比賽中恰好勝了3場的概率;
(3)求這支籃球隊(duì)在6場比賽中勝場數(shù)的期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若對任意x∈R,f′(x)=4x3,f(1)=-1,則f(x)=(  )
A.-x4B.-3x4+2C.x4-2D.4x4-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù) f(x)=$\frac{a}{x}$+xlnx,g(x)=x3-x2-5,若對任意的x1,x2∈[$\frac{1}{2}$,2],都有f(x1)-g(x2)≥2成立,則a的取值范圍是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若實(shí)數(shù)x、y滿足條件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-2≥0}\\{x≤1}\end{array}\right.$,則log2(2x+y)的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn(n∈N*),且滿足:
①|(zhì)a1|≠|(zhì)a2|;
②r(n-p)Sn+1=(n2+n)an+(n2-n-2)a1,其中r,p∈R,且r≠0.
(1)求p的值;
(2)數(shù)列{an}能否是等比數(shù)列?請說明理由;
(3)求證:當(dāng)r=2時(shí),數(shù)列{an}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)m,n∈R,若直線(m+1)x+(n+1)y-4=0與圓(x-2)2+(y-2)2=4相切,則m+n的取值范圍是x≥2+2$\sqrt{2}$或x≤2-2$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊答案