【題目】,為空間中兩條互相垂直的直線,等腰直角三角形的直角邊所在直線與,都垂直,斜邊以直線為旋轉(zhuǎn)軸旋轉(zhuǎn),有下列結(jié)論:

(1)當(dāng)直線角時,角;

(2)當(dāng)直線角時,角;

(3)直線所成角的最小值為;

(4)直線所成角的最小值為;

其中正確的是______(填寫所有正確結(jié)論的編號).

【答案】(1)(3)

【解析】

由題意知,a、b、AC三條直線兩兩相互垂直,構(gòu)建如圖所示的邊長為1的正方體,|AC|=1,|AB|,斜邊AB以直線AC為旋轉(zhuǎn)軸,則A點(diǎn)保持不變,B點(diǎn)的運(yùn)動軌跡是以C為圓心,1為半徑的圓,以C坐標(biāo)原點(diǎn),以CDx軸,CBy軸,CAz軸,建立空間直角坐標(biāo)系,利用向量法能求出結(jié)果.

由題意知,ab、AC三條直線兩兩相互垂直,畫出圖形如圖,

不妨設(shè)圖中所示正方體邊長為1,

故|AC|=1,|AB|,

斜邊AB以直線AC為旋轉(zhuǎn)軸,則A點(diǎn)保持不變,

B點(diǎn)的運(yùn)動軌跡是以C為圓心,1為半徑的圓,

C坐標(biāo)原點(diǎn),以CDx軸,CBy軸,CAz軸,建立空間直角坐標(biāo)系,

D(1,0,0),A(0,0,1),直線a的方向單位向量(0,1,0),||=1,

直線b的方向單位向量(1,0,0),||=1,

設(shè)B點(diǎn)在運(yùn)動過程中的坐標(biāo)中的坐標(biāo)B′(cosθ,sinθ,0),

其中θ為BCCD的夾角,θ∈[0,2π),

AB′在運(yùn)動過程中的向量為(cosθ,sinθ,﹣1),||,

設(shè)所成夾角為α∈[0,],

則cosα|sinθ|∈[0,],

∴α∈[,],∴(3)正確,(4)錯誤.

設(shè)所成夾角為β∈[0,],

cosβ|cosθ|,

當(dāng)夾角為60°時,即α,

|sinθ|,

∵cos2θ+sin2θ=1,∴cosβ|cosθ|

∵β∈[0,],∴β,此時的夾角為60°,

∴(1)正確,(2)錯誤.

故答案為:(1)(3).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校、兩個班的數(shù)學(xué)興趣小組在一次數(shù)學(xué)對抗賽中的成績繪制莖葉圖如下,通過莖葉圖比較兩班數(shù)學(xué)興趣小組成績的平均值及方差

班數(shù)學(xué)興趣小組的平均成績高于班的平均成績

班數(shù)學(xué)興趣小組的平均成績高于班的平均成績

班數(shù)學(xué)興趣小組成績的標(biāo)準(zhǔn)差大于班成績的標(biāo)準(zhǔn)差

班數(shù)學(xué)興趣小組成績的標(biāo)準(zhǔn)差大于班成績的標(biāo)準(zhǔn)差

其中正確結(jié)論的編號為( )

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓,且點(diǎn)到橢圓C的兩焦點(diǎn)的距離之和為.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ),是橢圓上的兩個點(diǎn),線段的中垂線的斜率為,且直線交于點(diǎn),求證:點(diǎn)在直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,側(cè)面底面,底面是平行四邊形, , , , 的中點(diǎn),點(diǎn)在線段上.

(Ⅰ)求證: ;

(Ⅱ)試確定點(diǎn)的位置,使得直線與平面所成的角和直線與平面所成的角相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中a,

當(dāng)時,若處取得極小值,求a的值;

當(dāng)時.

若函數(shù)在區(qū)間上單調(diào)遞增,求b的取值范圍;

若存在實(shí)數(shù),使得,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓與圓內(nèi)切,與圓外切,記圓心的軌跡為曲線.

(1)求曲線的方程.

(2)直線與曲線交于點(diǎn),,點(diǎn)為線段的中點(diǎn),若,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足:an+1and(n∈N*),前n項(xiàng)和記為Sna1=4,S3=21.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè)數(shù)列{bn}滿足b1bn+1bn=2an,求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四面體及其三視圖如圖所示,過棱的中點(diǎn)作平行于、的平面分別交四面體的棱、于點(diǎn)、

(1)求證:四邊形是矩形;

(2)求點(diǎn)到面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,過點(diǎn)的直線的參數(shù)方程為為參數(shù)).以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)若直線與曲線相交于, 兩點(diǎn),求的值.

查看答案和解析>>

同步練習(xí)冊答案