設(shè)P(x,y)是曲線
|x|
4
+
|y|
3
=1上的任意一點(diǎn),F(xiàn)1(-
7
,0),F(xiàn)2
7
,0),則|PF1|+|PF2|的值( 。
A、小于8B、大于8
C、不小于8D、不大于8
考點(diǎn):兩點(diǎn)間的距離公式
專題:計(jì)算題,直線與圓
分析:先將曲線方程化簡(jiǎn),再根據(jù)圖形的對(duì)稱性可知|PF1|+|PF2|的最大值為8.
解答: 解:曲線C可化為:
|x|
4
+
|y|
3
=1,它表示頂點(diǎn)分別為(±4,0),(0,±3),
根據(jù)圖形的對(duì)稱性可知|PF1|+|PF2|的最大值為8,當(dāng)且僅當(dāng)點(diǎn)P為(0,±3)時(shí)取最大值,
故選:D.
點(diǎn)評(píng):本題主要考查曲線與方程之間的關(guān)系,考查圖形的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x∈(0,1)時(shí),函數(shù)f(x)=
1+2x2
2x
1-x2
的最小值為b,若定義在R上的函數(shù)g(x)滿足:對(duì)任意m,n∈R都有g(shù)(m+n)=g(m)+g(n)+b,則下列結(jié)論正確的是(  )
A、g(x)-1是奇函數(shù)
B、g(x)+1是奇函數(shù)
C、g(x)-
3
是奇函數(shù)
D、g(x)-
3
是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=2x-1,則f(0)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓O:x2+y2=5和點(diǎn)A(1,2),則過(guò)A且與圓O相切的直線與兩坐標(biāo)軸圍成的三角形的面積為(  )
A、5
B、10
C、
25
2
D、
25
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)狱c(diǎn)M(x,y)與定點(diǎn)F(
P
2
,0)(P>0)和定直線x=-
P
2
得距離相等,
(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)設(shè)M,N是軌跡C上異于原點(diǎn)O的兩個(gè)不同點(diǎn),直線OM和ON的傾斜角分別為α和β,當(dāng)α+β=90°時(shí),求證:直線MN恒過(guò)一定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求經(jīng)過(guò)兩點(diǎn)A(2,m)和B(n,3)的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-2cosθx+1,x∈[-
3
2
,
1
2
]
(1)當(dāng)θ=
π
3
時(shí),求f(x)的最大值和最小值.
(2)若f(x)在x∈[-
3
2
,
1
2
]上是單調(diào)函數(shù),且θ∈[0,2π),求θ的取值范圍.
(3)若sinα,cosα是方程f(x)=
1
4
+cosθ的兩個(gè)實(shí)根,求
tan2α+1
tanα
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用數(shù)字1,2,3,4,5可以組成多少個(gè)沒有重復(fù)數(shù)字的三位數(shù)( 。
A、60B、125C、50D、25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

寫出以下五個(gè)命題中所有正確命題的編號(hào)
 

①點(diǎn)A(1,2)關(guān)于直線y=x-1的對(duì)稱點(diǎn)B的坐標(biāo)為(3,0);
②橢圓
x2
16
+
y2
9
=1的兩個(gè)焦點(diǎn)坐標(biāo)為(±5,0);
③命題p:|x+1|>2;命題q:
1
3-x
>1.?p是?q的充分不必要條件;
④如圖1所示的正方體ABCD-A1B1C1D1中,異面直線A1C1與B1C成60°的角;
⑤如圖2所示的正方形O′A′B′C′是水平放置的一個(gè)平面圖形的直觀圖,則原圖形是矩形.

查看答案和解析>>

同步練習(xí)冊(cè)答案