將全體正奇數(shù)排成一個(gè)三角形數(shù)陣:
1
3  5
7  9  11
13 15 17 19

按照以上排列的規(guī)律,第n 行(n≥3)從左向右的第3個(gè)數(shù)為_(kāi)_______.

n2-n+5
分析:由三角形數(shù)陣,知第n行的前面共有1+2+3+…+(n-1)個(gè)連續(xù)奇數(shù),第n行從左向右的第3個(gè)數(shù)應(yīng)為2[+3]-1;
解答:觀察三角形數(shù)陣,知第n行(n≥3)前共有1+2+3+…+(n-1)=個(gè)連續(xù)奇數(shù),第n行(n≥3)從左向右的第3個(gè)數(shù)為2[+3]-1,即n2-n+5;
故答案為:n2-n+5.
點(diǎn)評(píng):本題從觀察數(shù)陣的排列規(guī)律,考查了數(shù)列的求和應(yīng)用問(wèn)題;解題時(shí),關(guān)鍵是發(fā)現(xiàn)規(guī)律并應(yīng)用所學(xué)知識(shí),來(lái)解答問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將全體正奇數(shù)排成一個(gè)三角形數(shù)陣:
1
3   5
7   9   11
13  15  17  19

按照以上排列的規(guī)律,第n 行(n≥3)從左向右的第3個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將全體正奇數(shù)排成一個(gè)三角形數(shù)陣:
1
3   5
7   9   11
13  15  17  19

按照以上排列的規(guī)律,第n 行(n≥3)從左向右的第3個(gè)數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將全體正奇數(shù)排成一個(gè)三角形數(shù)陣如圖:按照以上排列的規(guī)律,第n行(n≥3)從左向右的第3個(gè)數(shù)為
n2-n+5
n2-n+5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年北京市豐臺(tái)區(qū)高三下學(xué)期統(tǒng)一練習(xí)數(shù)學(xué)理卷 題型:填空題

將全體正奇數(shù)排成一個(gè)三角形數(shù)陣:

    1

    3   5

    7   9   11

    13  15  17  19

    ……

    按照以上排列的規(guī)律,第n 行(n ≥3)從左向右的第3個(gè)數(shù)為  

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年北京市豐臺(tái)區(qū)高三下學(xué)期統(tǒng)一練習(xí)數(shù)學(xué)理卷 題型:填空題

將全體正奇數(shù)排成一個(gè)三角形數(shù)陣:

    1

    3   5

    7   9   11

    13  15  17  19

    ……

    按照以上排列的規(guī)律,第n 行(n ≥3)從左向右的第3個(gè)數(shù)為  

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案