【題目】已知是橢圓與拋物線的一個公共點,且橢圓與拋物線具有一個相同的焦點.
(1)求橢圓及拋物線的方程;
(2)設(shè)過且互相垂直的兩動直線,與橢圓交于兩點,與拋物線交于兩點,求四邊形面積的最小值
【答案】(Ⅰ)橢圓的方程為,拋物線的方程為;(Ⅱ)見解析.
【解析】
(1)先求 ,即得c,再將點P坐標(biāo)代入橢圓方程,解方程組得a,b,即得結(jié)果,(2)根據(jù)垂直條件得,設(shè)直線的方程,與橢圓方程聯(lián)立方程,結(jié)合韋達(dá)定理以及弦長公式解得AB,類似可得CD,最后根據(jù)二次函數(shù)性質(zhì)求最值.
(Ⅰ)拋物線:一點
,即拋物線的方程為,
又在橢圓:上
,結(jié)合知(負(fù)舍), ,
橢圓的方程為,拋物線的方程為.
(Ⅱ)由題可知直線斜率存在,設(shè)直線的方程,
①當(dāng)時,,直線的方程,,故
②當(dāng)時,直線的方程為,由得.
由弦長公式知 .
同理可得.
.
令,則,當(dāng)時,,
綜上所述:四邊形面積的最小值為8.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: (a>b>0)的離心率 ,且點 在橢圓E上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)直線l與橢圓E交于A、B兩點,且線段AB的垂直平分線經(jīng)過點 .求△AOB(O為坐標(biāo)原點)面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點M到點的距離比它到軸的距離大2,記點M的軌跡為C.
(1)求軌跡C的方程;
(2)若直線與軌跡C恰有2個公共點,求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線和橢圓有公共的焦點,且離心率為.
(Ⅰ)求雙曲線的方程.
(Ⅱ)經(jīng)過點作直線交雙曲線于, 兩點,且為的中點,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)g(x)滿足g(g(x))=n(n∈N)有n+3個解,則稱函數(shù)g(x)為“復(fù)合n+3解”函數(shù).已知函數(shù)f(x)= (其中e是自然對數(shù)的底數(shù),e=2.71828…,k∈R),且函數(shù)f(x)為“復(fù)合5解”函數(shù),則k的取值范圍是( )
A.(﹣∞,0)
B.(﹣e,e)
C.(﹣1,1)
D.(0,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y2=2px(p>0)的焦點為F,A(x1,y1),B(x2,y2)是過F的直線與拋物線的兩個交點,求證:
(1)y1y2=-p2,;(2)為定值;
(3)以AB為直徑的圓與拋物線的準(zhǔn)線相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某校甲、乙、丙三個年級的學(xué)生志愿者人數(shù)分別為240,160,160.現(xiàn)采用分層抽樣的方法從中抽。访瑢W(xué)去某敬老院參加獻(xiàn)愛心活動.
(Ⅰ)應(yīng)從甲、乙、丙三個年級的學(xué)生志愿者中分別抽取多少人?
(Ⅱ)設(shè)抽出的7名同學(xué)分別用A,B,C,D,E,F,G表示,現(xiàn)從中隨機(jī)抽取2名同學(xué)承擔(dān)敬老院的衛(wèi)生工作.
(i)試用所給字母列舉出所有可能的抽取結(jié)果;
(ii)設(shè)M為事件“抽取的2名同學(xué)來自同一年級”,求事件M發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,傾斜角為α(α≠ )的直線l的參數(shù)方程為 (t為參數(shù)).以坐標(biāo)原點為極點,以x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是ρcos2θ﹣4sinθ=0.
(I)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)已知點P(1,0).若點M的極坐標(biāo)為(1, ),直線l經(jīng)過點M且與曲線C相交于A,B兩點,設(shè)線段AB的中點為Q,求|PQ|的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com