9.設(shè)Sn是等比數(shù)列{an}的前n項(xiàng)和,公比q>0,則Sn+1an與Snan+1的大小關(guān)系是( 。
A.Sn+1an>Snan+1B.Sn+1an<Snan+1C.Sn+1an≥Snan+1D.Sn+1an≤Snan+1

分析 對(duì)q分類討論,利用求和公式作差即可得出.

解答 解:當(dāng)q=1時(shí),Sn+1an=(n+1)${a}_{1}^{2}$,Snan+1=$n{a}_{1}^{2}$ 
Sn+1an-Snan+1=${a}_{1}^{2}$>0.
當(dāng)q>0且q≠1時(shí),Sn+1an-Snan+1=$\frac{{a}_{1}(1-{q}^{n+1})•{a}_{1}{q}^{n-1}}{1-q}$-$\frac{{a}_{1}(1-{q}^{n})•{a}_{1}{q}^{n}}{1-q}$=$\frac{{a}_{1}^{2}{q}^{n-1}(1-q)}{1-q}$=${a}_{1}^{2}{q}^{n-1}$>0.
∴Sn+1an>Snan+1
綜上可得:Sn+1an>Snan+1
故選:A.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式與求和公式、作差法、分類討論方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某電影院共有1000個(gè)座位,票價(jià)不分等次,根據(jù)電影院的經(jīng)營(yíng)經(jīng)驗(yàn),當(dāng)每張票價(jià)不超過10元時(shí),票可全部售出;當(dāng)票價(jià)高于10元時(shí),每提高1元,將有30張票不能售出.為了獲得更好的收益,需要給電影院一個(gè)合適的票價(jià),基本條件是:①為了方便找零和算賬,票價(jià)定為1元的整數(shù)倍;②電影院放映一場(chǎng)電影的成本是5750元,票房收入必須高于成本.用x(元)表示每張票價(jià),用y(元)表示該電影放映一場(chǎng)的純收入(除去成本后的收入).
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)票價(jià)定為多少時(shí),電影放映一場(chǎng)的純收入最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.下表是降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對(duì)照數(shù)據(jù),根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程y=0.75x+0.35,那么表中m=3.9.
X3456
y2.5m44.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知命題p:k2-2k-24≤0;命題q:方程$\frac{x^2}{3-k}+\frac{y^2}{3+k}=1$表示焦點(diǎn)在x軸上的雙曲線.
(1)若命題q為真,求實(shí)數(shù)k的取值范圍;
(2)若命題“p∨q”為真,“p∧q“為假,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)集合A={-2,-1,0,1,2},B={x|x2+2x<0},則A∩(∁RB)=( 。
A.{1,2}B.{0,1,2}C.{-2,1,2}D.{-2,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列函數(shù)中,與函數(shù)$f(x)=\frac{1}{{\root{3}{x}}}$的定義域相同的函數(shù)是(  )
A.y(x)=x•exB.$y=\frac{sinx}{x}$C.$y=\frac{x}{sinx}$D.$y=\frac{lnx}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知變量x、y滿足約束條件$\left\{\begin{array}{l}x+y-3≥0\\ 3x-y-3≥0\\ x≤a\end{array}\right.$若$\frac{y}{x+1}$的最大值為2,則$\frac{y}{x+1}$的最小值為( 。
A.$\frac{1}{6}$B.$-\frac{3}{5}$C.$-\frac{1}{2}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{1}{2}$,點(diǎn)$({\sqrt{3},-\frac{{\sqrt{3}}}{2}})$在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過橢圓C的右焦點(diǎn)F作直線l與橢圓C交于不同的兩點(diǎn)M(x1,y1),N(x2,y2),若點(diǎn)P與點(diǎn)N關(guān)于x軸對(duì)稱,判斷直線PM是否恒過定點(diǎn),若是,求出該點(diǎn)的坐標(biāo);若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.閱讀如圖程序框圖,并根據(jù)該程序框圖回答以下問題:
(1)若輸入的x分別為2,4,求輸出y的值;
(2)說明該程序框圖的功能.

查看答案和解析>>

同步練習(xí)冊(cè)答案