(本題滿分12分)
如圖所示的空間幾何體,平面ACD⊥平面ABC,AB=BC=CA=DA=DC=BE=2,BE和平面ABC所成的角為.且點E在平面ABC上的射影落在的平分線上。

(I)求證:DE//平面ABC;
(II)求二面角E—BC—A的余弦;
(III)求多面體ABCDE的體積。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(本題滿分14分).如圖,ABCD中,AB=1,AD=2AB,∠ADC=,EC⊥面ABCD,
EF∥AC, EF=, CE=1
(1)求證:AF∥面BDE
(2)求CF與面DCE所成角的正切值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分分)在邊長為的正方體中,
的中點,的中點,
(1)求證:平面;
(2)求點到平面的距離;
(3)求二面角的平面角大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)如圖,在四棱錐P—ABCD中,PA⊥平面ABCD,四邊形ABCD為直角梯形,AD//BC且AD﹥BC,∠DAB=∠ABC=90°,PA=,AB=BC=1。M為PC的中點。

(1)求二面角M—AD—C的大。(6分)
(2)如果∠AMD=90°,求線段AD的長。(6分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題14分)已知空間三點A(0,2,3),B(-2,1,6),C(1,-1,5)

⑴求以向量為一組鄰邊的平行四邊形的面積S;
⑵若向量分別與向量垂直,且,求向量的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

 已知正三棱柱的側(cè)棱長和底面邊長均為2, N為側(cè)棱上的點,若平面與平面所成二面角(銳角)的余弦值為,試確定點N的位置。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的一段圖象如圖所示,則它的一個周期T、初相依次為(  )
A.,B.,
C.,D.,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,E、F分別為正方體的面、面的中心,則四邊形在該正方體的面上的射影可能是__________ (只寫出序號即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在矩形ABCD中,AB = 4,BC = 3,沿對角線AC把矩形折成二面角D-AC-B,并且D點在平面ABC內(nèi)的射影落在AB上.若在四面體D-ABC內(nèi)有一球,當(dāng)球的體積最大時,球的半徑是         .

查看答案和解析>>

同步練習(xí)冊答案