20.已知a=2.50.8,b=log2.50.8,c=sin2.5,則(  )
A.a<b<cB.b<c<aC.a<c<bD.c<a<b

分析 利用指數(shù)函數(shù)、對數(shù)函數(shù)與三角函數(shù)的單調(diào)性即可得出.

解答 解:∵a=2.50.8>1,b=log2.50.8<0,c=sin2.5∈(0,1),
則a>c>b.
故選:B.

點評 本題考查了指數(shù)函數(shù)、對數(shù)函數(shù)與三角函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.已知三條直線兩兩垂直,下列說法正確的是(  )
A.這三條直線必共點B.這三條直線不可能在同一平面內(nèi)
C.其中必有兩條直線異面D.其中必有兩條直線共面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.函數(shù)f(x)=|tanx|的周期為( 。
A.B.πC.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知數(shù)列{an}的前n項和Sn=$\frac{n(3n-1)}{2}$,若a1,a4,am成等比數(shù)列,則m=(  )
A.19B.34C.100D.484

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知二次函數(shù)f(x)=ax2+bx+c.
(1)若f(-1)=0,試判斷函數(shù)f(x)的零點個數(shù);
(2)是否存在實數(shù)a,b,c,使得f(x)同時滿足以下條件:
①對?x∈R,f(x-2)=f(-x);
②對?x∈R,0≤f(x)-x≤$\frac{1}{2}$(x-1)2?如果存在,求出a,b,c的值,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.一個大型噴水池的中央有一個強大噴水柱,為了測量噴水柱噴出的水柱的高度,某人在噴水柱正西方向的點A測得水柱頂端的仰角為45°,沿點A向北偏東30°前進100米到達點B,在B點測得水柱頂端的仰角為30°(點A、B處和水柱底端在同一水平面上),則水柱的高度是( 。
A.50mB.100mC.120mD.150m

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知點Pn(an,bn)(n∈N*)都在直線l:y=2x+2上,P1為直線l與x軸的交點,數(shù)列{an}成等差數(shù)列,公差為1.
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)若$f(n)=\left\{\begin{array}{l}{a_n},n為奇數(shù)\\{b_n},n為偶數(shù)\end{array}\right.$問是否存在k∈N*,使得f(k+5)=2f(k)-2成立?若存在,求出k的值,若不存在,說明理由;
(Ⅲ)求證:$\frac{1}{{|{p_1}{p_2}{|^2}}}+\frac{1}{{|{p_1}{p_3}{|^2}}}+…+\frac{1}{{|{p_1}{p_n}{|^2}}}<\frac{2}{5}$(n≥2,n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.方程3Cx-34=5Ax-42的根為(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)f(x)=$\frac{1}{x}$+cx2,其中c為常數(shù),那么“c=0”是“f(x)為奇函數(shù)”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案