20.二次不等式mx2-mx-1<0 的解集是全體實(shí)數(shù),則m的取值范圍是(-4,0).

分析 根據(jù)不等式mx2-mx-1<0 是二次不等式,可得m≠0,故mx2-mx-1<0 的解集是全體實(shí)數(shù),可化為$\left\{\begin{array}{l}m<0\\△={m}^{2}+4m<0\end{array}\right.$,解得m的取值范圍.

解答 解:∵二次不等式mx2-mx-1<0 的解集是全體實(shí)數(shù),
故$\left\{\begin{array}{l}m<0\\△={m}^{2}+4m<0\end{array}\right.$,
解得:m∈(-4,0),
故答案為:(-4,0)

點(diǎn)評 本題考查的知識(shí)點(diǎn)是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知f($\frac{1-x}{1+x}$)=x,則f(x)的表達(dá)式為( 。
A.$\frac{1-x}{1+x}$B.$\frac{1+x}{1-x}$C.$\frac{x-1}{x+1}$D.$\frac{2x}{x-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知α為銳角,且cos($\frac{π}{2}$+α)=-$\frac{3}{5}$,則tanα=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知冪函數(shù)f(x)=(m2-3m+3)xm+1為偶函數(shù),g(x)=loga[f(x)-ax](a>0且a≠1).
(Ⅰ)求f(x)的解析式;
(Ⅱ)若g(x)在區(qū)間(2,3)上為增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知F是拋物線C:y2=8x的焦點(diǎn),直線y=kx-3k與C交于M,N兩點(diǎn),與C的準(zhǔn)線相交于點(diǎn)P,|$\overrightarrow{MF}$|=4,且$\overrightarrow{PM}$=λ$\overrightarrow{MN}$(λ∈R),則λ=( 。
A.$\frac{8}{5}$B.$\frac{2}{3}$C.$\frac{4}{7}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=alnx+ax2+bx,(a,b∈R).
(1)設(shè)a=1,f(x)在x=1處的切線過點(diǎn)(2,6),求b的值;
(2)設(shè)b=a2+2,求函數(shù)f(x)在區(qū)間[1,4]上的最大值;
(3)定義:一般的,設(shè)函數(shù)g(x)的定義域?yàn)镈,若存在x0∈D,使g(x0)=x0成立,則稱x0為函數(shù)g(x)的不動(dòng)點(diǎn).設(shè)a>0,試問當(dāng)函數(shù)f(x)有兩個(gè)不同的不動(dòng)點(diǎn)時(shí),這兩個(gè)不動(dòng)點(diǎn)能否同時(shí)也是函數(shù)f(x)的極值點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知集合A={0,2},B={1,2,3},則A∩B={2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)A={x|x≤1或x≥3},B={x|a≤x≤a+1},A∩B=B,則a的取值范圍是a≤0或a≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓C:$\frac{{x}^{2}}{4}$+y2=1,點(diǎn)F1、F2為橢圓的左、右焦點(diǎn),點(diǎn)P為橢圓上的一點(diǎn).
(1)當(dāng)∠F1PF2為直角,求P點(diǎn)橫坐標(biāo)的值;
(2)當(dāng)∠F1PF2=60°時(shí),求△F1PF2面積.

查看答案和解析>>

同步練習(xí)冊答案