13.設(shè)sin(π-θ)=$\frac{1}{3}$,則cos2θ=( 。
A.±$\frac{4\sqrt{2}}{9}$B.$\frac{7}{9}$C.-$\frac{4\sqrt{2}}{9}$D.-$\frac{7}{9}$

分析 利用誘導(dǎo)公式求得sinθ的值,再利用二倍角公式求得cos2θ的值.

解答 解:∵sin(π-θ)=sinθ=$\frac{1}{3}$,則cos2θ=1-2sin2θ=1-2•$\frac{1}{9}$=$\frac{7}{9}$,
故選:B.

點(diǎn)評(píng) 本題主要考查利用誘導(dǎo)公式、二倍角公式進(jìn)行化簡求值,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知?jiǎng)狱c(diǎn)P到點(diǎn)($\frac{1}{2}$,0)的距離比它到直線x=-$\frac{5}{2}$的距離小2.
(Ⅰ)求動(dòng)點(diǎn)P的軌跡方程;
(Ⅱ)記P點(diǎn)的軌跡為E,過點(diǎn)S(2,0)斜率為k1的直線交E于A,B兩點(diǎn),Q(1,0),延長AQ,BQ與E交于C,D兩點(diǎn),設(shè)CD的斜率為k2,證明:$\frac{{k}_{2}}{{k}_{1}}$為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在區(qū)間[0,8]上隨機(jī)取一個(gè)x的值,執(zhí)行如圖的程序框圖,則輸出的y≥3的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖所示,在邊長為1的正方形OABC內(nèi)任取一點(diǎn)P,用A表示事件“點(diǎn)P恰好取自由曲線$y=\sqrt{x}$與直線x=1及x軸所圍成的曲邊梯形內(nèi)”,B表示事件“點(diǎn)P恰好取自陰影部分內(nèi)”,則P(B|A)=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知x,y滿足約束條件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-2y-2≤0}\\{2x-y+2≥0}\end{array}\right.$,若2x+y+k≥0恒成立,則直線2x+y+k=0被圓(x-1)2+(y-2)2=25截得的弦長的最大值為( 。
A.10B.2$\sqrt{5}$C.4$\sqrt{5}$D.3$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=$\frac{{e}^{x}}{x}-kx$(e為自然對(duì)數(shù)的底數(shù))有且只有一個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是( 。
A.(0,2)B.(0,$\frac{{e}^{2}}{4}$)C.(0,e)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知A為橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上一點(diǎn),B為點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱點(diǎn),F(xiàn)為橢圓的左焦點(diǎn),且AF⊥BF,若∠ABF∈[$\frac{π}{12}$,$\frac{π}{4}$],則該橢圓離心率的取值范圍為( 。
A.[0,$\frac{\sqrt{2}}{2}$]B.[$\frac{\sqrt{2}}{2}$,1)C.[0,$\frac{\sqrt{6}}{3}$]D.[$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{6}}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合M={-1,0,1,2,3},N={x|x2-2x>0},則M∩N=( 。
A.{3}B.{2,3}C.{-1,3}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.等比數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=1,a1,S2,5成等差數(shù)列,則數(shù)列{an}的公比q=2.

查看答案和解析>>

同步練習(xí)冊答案