11.設(shè)P,Q分別為圓x2+(y-6)2=2和橢圓$\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{2}$=1上的點(diǎn),則P,Q兩點(diǎn)間的最大距離是( 。
A.5$\sqrt{2}$B.$\sqrt{46}$+$\sqrt{2}$C.2$\sqrt{15}$+$\sqrt{2}$D.6$\sqrt{2}$

分析 由圓的方程求出圓心坐標(biāo)和半徑,設(shè)出Q的坐標(biāo),由兩點(diǎn)間的距離公式列式,化為關(guān)于Q的縱坐標(biāo)的函數(shù),配方求得Q到圓心的距離的最大值,即可求P,Q兩點(diǎn)間的距離的最大值.

解答 解:如圖,由圓x2+(y-6)2=2,得圓心坐標(biāo)為C(0,6),半徑為$\sqrt{2}$.
設(shè)Q(x,y)是橢圓$\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{2}$=1上的點(diǎn),
∴|QC|=$\sqrt{{x}^{2}+(y-6)^{2}}$=$\sqrt{-9(y+\frac{2}{3})^{2}+52}$,
∵-$\sqrt{2}$≤y≤$\sqrt{2}$,
∴y=-$\frac{2}{3}$時(shí),Q與圓心C的距離的最大值為$2\sqrt{13}$.
∴P,Q兩點(diǎn)間的距離的最大值為2$\sqrt{13}$+$\sqrt{2}$.
故選:C.

點(diǎn)評(píng) 本題考查橢圓的定義與方程,考查兩點(diǎn)間距離公式的運(yùn)用,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在平面直角坐標(biāo)系xOy中,已知圓O的方程為x2+y2=2
(1)若直線l與圓O切于第一象限,且與坐標(biāo)軸交于點(diǎn)D,E,當(dāng)DE長(zhǎng)最小時(shí),求直線l的方程;
(2)設(shè)M,P是圓O上任意兩點(diǎn),點(diǎn)M關(guān)于x軸的對(duì)稱點(diǎn)N,若直線MP,NP分別交x軸于點(diǎn)(m,0)(n,0),問(wèn)mn是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)全集u={1,2,3,4,5,6,7,8,9},集合A={1,2,3,4,5,6},B={4,5,6,7,8}
(1)求A∩B
(2)求A∪B
(3)求∁uA∪∁uB
(4)求∁uA∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知橢圓$\frac{x^2}{9}$+$\frac{y^2}{5}$=1,P(1,1)為橢圓內(nèi)一點(diǎn),F(xiàn)1為橢圓的左焦點(diǎn),M為橢圓上一動(dòng)點(diǎn):
(理)則|MP|+$\frac{3}{2}$|MF1|的最小值為$\frac{11}{2}$;
(文)則|MP|+|MF1|的取值范圍為(6-$\sqrt{2}$,6+$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2$\sqrt{2}$sin(θ-$\frac{π}{4}$),直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-\frac{\sqrt{2}}{3}t}\\{y=-1+\frac{\sqrt{2}}{4}t}\end{array}\right.$,直線l和圓C交于A,B兩點(diǎn),P是圓C上不同于A,B的任意一點(diǎn)
(1)求圓C的直角坐標(biāo)方程;
(2)求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.寫出命題“若x2+x-2≤0,則|2x+1|<1”的逆命題、否命題、逆否命題,并分別判斷它們的真假.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=loga(x-1)+4(a>0且a≠1)恒過(guò)定點(diǎn)P,若點(diǎn)P也在冪函數(shù)g(x)的圖象上,則g(3)=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=sin2x+2$\sqrt{3}$sinxcosx+3cos2x,x∈R.求:
(I)求函數(shù)f(x)的最小正周期;
(II)求函數(shù)f(x)在區(qū)間[-$\frac{π}{6},\frac{π}{3}$]上的值域.
(Ⅲ)描述如何由y=sinx的圖象變換得到函數(shù)f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.定義在(0,+∞)上的函數(shù)f(x)滿足下面三個(gè)條件:
①對(duì)任意正數(shù)a,b,都有f(a)+f(b)=f(ab);
②當(dāng)x>1時(shí),f(x)<0;
③f(2)=-1.
(Ⅰ)求f(1)的值域;
(Ⅱ)試用單調(diào)性定義證明:函數(shù)f(x)在(0,+∞)上是減函數(shù);
(Ⅲ)求滿足f(3x-1)>2的x的取值集合.

查看答案和解析>>

同步練習(xí)冊(cè)答案