函數(shù)上是減函數(shù),求實(shí)數(shù)的取值范圍.

解析試題分析:復(fù)合函數(shù)單調(diào)性口訣“同增異減”,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/23/9/otn7o1.png" style="vertical-align:middle;" />在其定義域上是減函數(shù),所以上是增函數(shù),又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/19/9/y4zna2.png" style="vertical-align:middle;" />是真數(shù)所以應(yīng)大于0。函數(shù)的圖像開口向上,對稱軸為。結(jié)合圖像可分析得出滿足題意的不等式。
試題解析:解:由題意知,上是增函數(shù)且恒正,則                     (12分)
考點(diǎn):函數(shù)的單調(diào)性,數(shù)形結(jié)合思想。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知奇函數(shù)f(x)的定義域?yàn)閇-2,2],且在區(qū)間[-2,0]內(nèi)遞減,若f(1-m)+f(1-m2)<0,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(I)求函數(shù)的單調(diào)區(qū)間;
(II)若不等式)在上恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(2x)
(I)用定義證明函數(shù)上為減函數(shù)。
(II)求上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)求函數(shù)的定義域;
(Ⅱ)判斷函數(shù)的奇偶性;
(Ⅲ)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若,求的值;
(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)若,求實(shí)數(shù)x的取值范圍;
(2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

運(yùn)貨卡車以每小時(shí)x千米的勻速行駛130千米,按交通法規(guī)限制50≤x≤100(單位:千米/小時(shí)).假設(shè)汽油的價(jià)格是每升2元,而汽車每小時(shí)耗油()升,司機(jī)的工資是每小時(shí)14元.
(1)求這次行車總費(fèi)用y關(guān)于x的表達(dá)式;
(2)當(dāng)x為何值時(shí),這次行車的總費(fèi)用最低,并求出最低費(fèi)用的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)f(x)=ax-(1+a2)x2,其中a>0,區(qū)間I={x|f(x)>0}.
(1)求I的長度(注:區(qū)間(α,β)的長度定義為β-α);
(2)給定常數(shù)k∈(0,1),當(dāng)1-k≤a≤1+k時(shí),求I的長度的最小值.

查看答案和解析>>

同步練習(xí)冊答案