有一矩形鋼板ABCD缺損了一角(圖中陰影部分),邊緣線OM上每一點(diǎn)到點(diǎn)D的距離都等于它到邊AB的距離.工人師傅要將缺損的一角切割下來使剩余部分成一個(gè)五邊形,已知AB=4米,AD=2米.
(1)如圖所示建立直角坐標(biāo)系,求邊緣線OM的軌跡方程;
(2)①設(shè)點(diǎn)P(t,m)為邊緣線OM上的一個(gè)動(dòng)點(diǎn),試求出點(diǎn)P處切線EF的方程(用t表示);
②求AF的值,使截去的△DEF的面積最小.

解:(1)如圖,以O(shè)點(diǎn)為原點(diǎn),OD所在直線為y軸,建立直角坐標(biāo)系,
則D(0,1),直線AB方程為y=-1
∵OM上每一點(diǎn)到點(diǎn)D的距離都等于它到邊AB的距離,
∴OM的軌跡為以D點(diǎn)為焦點(diǎn),以AB為直徑的拋物線的一部分,
∴OM的軌跡方程為x2=4y(0≤x≤1)
(2)①∵點(diǎn)P(t,m)在曲線x2=4y,∴t2=4m,m=
曲線x2=4y可化為y=,求導(dǎo),得,y′=
∴曲線在點(diǎn)P處切線斜率k=,切線EF的方程為y-m=(x-t)
把m=代入,得,y-=(x-t)
②令切線y-=(x-t)中x=0,得,y=-
令y=1,得,x=
∴S△DEF=|DE||DF|=(1+)()=
∴S′△DEF=,當(dāng)t∈[0,1]時(shí),S′△DEF<0
∴S△DEF隨t的增大而減小,
∵0≤t≤1,∴當(dāng)t=1時(shí),S△DEF有最小值為
此時(shí)F點(diǎn)坐標(biāo)為(0,-),AF=
∴當(dāng)AF=時(shí),截去的△DEF的面積最小.
分析:(1)建立直角坐標(biāo)系,利用拋物線的定義,到定點(diǎn)距離等于到定直線距離的點(diǎn)的軌跡為拋物線,可判斷OM的軌跡形狀,再利用拋物線方程的求法求出軌跡方程即可.
(2)①欲求曲線在點(diǎn)P處的切線方程,只需求出切線的斜率,根據(jù)切線斜率是曲線在切點(diǎn)處的導(dǎo)數(shù),即可求出切線斜率,再用直線方程的點(diǎn)斜式寫出切線方程.
②利用①中所求切線方程,求出E,F(xiàn)兩點(diǎn)坐標(biāo),把三角形DEF的面積用含t的式子表示,再用導(dǎo)數(shù)判斷t等于何值時(shí),面積有最小值.
點(diǎn)評:本題主要考查了借助圓錐曲線中的知識解決實(shí)際問題,屬于圓錐曲線的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,有一矩形鋼板ABCD缺損了一角(圖中陰影部分),邊緣線OM上每一點(diǎn)到點(diǎn)D的距離都等于它到邊AB的距離.工人師傅要將缺損的一角切割下來使剩余部分成一個(gè)五邊形,若AB=1米,AD=0.5米,當(dāng)沿切割線EF切割使剩余部分五邊形ABCEF的面積最大時(shí),AF的長度為( 。┟祝
A、
1
12
B、
1
6
C、
5
12
D、
3-
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有一矩形鋼板ABCD缺損了一角(圖中陰影部分),邊緣線OM上每一點(diǎn)到點(diǎn)D的距離都等于它到邊AB的距離.工人師傅要將缺損的一角切割下來使剩余部分成一個(gè)五邊形,已知AB=4米,AD=2米.
(1)如圖所示建立直角坐標(biāo)系,求邊緣線OM的軌跡方程;
(2)①設(shè)點(diǎn)P(t,m)為邊緣線OM上的一個(gè)動(dòng)點(diǎn),試求出點(diǎn)P處切線EF的方程(用t表示);
②求AF的值,使截去的△DEF的面積最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,有一矩形鋼板ABCD缺損了一角(圖中陰影部分),邊緣線OM上每一點(diǎn)到D的距離都等于它到邊AB的距離.工人師傅要將缺損的一角切割下來使剩余部分成一個(gè)五邊形,若AB=1米,AD=0.5米,向如何畫切割線EF可使剩余部分五邊形ABCEF的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河北省期末題 題型:解答題

如圖,有一矩形鋼板ABCD缺損了一角(圖中陰影部分),邊緣線OM上每一點(diǎn)到D的距離都等于它到邊AB的距離,工人師傅要將缺損的一角切割下來使剩余部分成一個(gè)五邊形,若AB=1米,AD=0.5米,問如何畫切割線EF可使五邊形ABCEF的面積最大?

查看答案和解析>>

同步練習(xí)冊答案