以拋物線y2=4x的焦點為頂點,頂點為中心,離心率為2的雙曲線方程是
 
考點:拋物線的標準方程
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:先根據(jù)拋物線方程求得焦點坐標,進而確定雙曲線的頂點,求得雙曲線中的a,根據(jù)離心率進而求c,最后根據(jù)b2=c2-a2求得b,則雙曲線的方程可得.
解答: 解:由題可設(shè)雙曲線的方程為:
x2
a2
-
y2
b2
=1

∵拋物線y2=4x中2p=4,
∴其焦點F(1,0),
又∴雙曲線的一個頂點與拋物線y2=4x的焦點重合,
∴a=1,
又e=
c
a
=2,
∴c=2,故b2=4-1=3,
∴雙曲線的方程為x2-
y2
3
=1.
故答案為:x2-
y2
3
=1.
點評:本題主要考查了雙曲線的標準方程、圓錐曲線的共同特征,解答關(guān)鍵是對于圓錐曲線的共同特征的理解與應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,已知A=60°,b=1,△ABC的面積為
3
,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

交通管理部門為了解機動車駕駛員(簡稱駕駛員)對某新法規(guī)的知曉情況,對甲、乙、丙、丁四個社區(qū)做分層抽樣調(diào)查.假設(shè)四個社區(qū)駕駛員的總?cè)藬?shù)為N,其中甲社區(qū)有駕駛員96人.若在甲、乙、丙、丁四個社區(qū)抽取駕駛員的人數(shù)分別為12,21,25,43,則這四個社區(qū)駕駛員的總?cè)藬?shù)N=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且(c-b)(sinC+sinB)=(c-a)sinA,則B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={(x,y)|
3x-y+2≥0
x≤4
y≥5
},則集合A中滿足
y
x
7
2
的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若圓x2+y2=4與圓x2+y2+(a-1)y=0(a>0)的公共弦長為2
3
,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a,b∈R,i是虛數(shù)單位,且a+(b-1)i=1+i,則
1-bi
ai
對應(yīng)的點在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡
AC
+
CD
+
DA
=( 。
A、
AD
B、
DA
C、
DC
D、
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,過橢圓右焦點F2斜率為k(k≠0)的直線l與橢圓C相交于E、F兩點,△EFF1的周長為8,且橢圓C與圓x2+y2=3相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)A為橢圓的右頂點,直線AE,AF分別交直線x=4于點M,N,線段MN的中點為P,記直線PF2的斜率為k′,求證k•k′為定值.

查看答案和解析>>

同步練習(xí)冊答案