已知平面直角坐標(biāo)系中O是坐標(biāo)原點(diǎn),,圓的外接圓,過點(diǎn)(2,6)的直線為。

(1)求圓的方程;

(2)若與圓相切,求切線方程;

(3)若被圓所截得的弦長為,求直線的方程。

 

【答案】

解:(1)圓C的方程為:

(2)         (3)

【解析】此題考查了直線與圓相交的性質(zhì),直線與圓的位置關(guān)系,以及圓的標(biāo)準(zhǔn)方程,涉及的知識有:兩直線垂直時(shí)斜率滿足的關(guān)系,直線斜率的求法,直線的點(diǎn)斜式方程,兩點(diǎn)間的距離公式,線段中點(diǎn)坐標(biāo)公式,點(diǎn)到直線的距離公式,垂徑定理,以及勾股定理,利用了分類討論及轉(zhuǎn)化的思想,其中當(dāng)直線與圓相交時(shí),常常根據(jù)垂徑定理由垂直得中點(diǎn),進(jìn)而利用弦長的一半,圓的半徑及弦心距構(gòu)造直角三角形,利用勾股定理來解決問題.

(1)三角形外接圓的圓心C為三角形三邊垂直平分線的交點(diǎn),故找出邊OA與OB的垂直平分線交點(diǎn)即為圓心C,由A和O的坐標(biāo)得出直線OA的斜率,利用兩直線垂直時(shí)斜率滿足的關(guān)系求出線段OA垂直平分線的斜率,再利用線段中點(diǎn)坐標(biāo)公式求出線段OA的中點(diǎn)坐標(biāo),確定出線段OA垂直平分線的方程,找出線段OB垂直平分線的方程,兩直線解析式聯(lián)立求出兩直線的交點(diǎn)坐標(biāo),即為圓心C的坐標(biāo),再由C與O的坐標(biāo),利用兩點(diǎn)間的距離公式求出|OC|的長,即為圓C的半徑,由圓心和半徑寫出圓C的標(biāo)準(zhǔn)方程即可;

(2)顯然切線方程的斜率存在,設(shè)切線方程的斜率為k,由切線過(2,6),表示出切線的方程,由直線與圓相切時(shí),圓心到直線的距離等于圓的半徑,利用點(diǎn)到直線的距離公式列出關(guān)于k的方程,求出方程的解得到k的值,即可確定出切線的方程;

(3)當(dāng)直線l的斜率不存在時(shí),顯然x=2滿足題意;當(dāng)直線l的斜率存在時(shí),設(shè)直線l的斜率為k,由直線l過(2,6),表示出直線l的方程,由弦長及半徑,利用垂徑定理及勾股定理求出弦心距,即為圓心C到直線l的距離,再利用點(diǎn)到直線的距離公式表示出圓心C到直線l的距離,列出關(guān)于k的方程,求出方程的解得到k的值,確定出直線l的方程,綜上,得到所有滿足題意的直線l的方程

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知平面直角坐標(biāo)系中三點(diǎn)坐標(biāo)分別為A(3,0),B(0,4),C(cosθ,sinθ),θ∈R,則△ABC面積的最大值為( 。
A、
7
2
B、
9
2
C、
17
2
D、
21
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),A(-3,4),B(6,-2).C(4,6),D在AB上,且2AD=BD
(1)求
AB
的坐標(biāo)及|
1
2
BC
|
;
(2)若
OE
=
OA
+
OB
,  
OF
=
OA
-
OB
,求
OE
OF
;
(3)求向量
DB
DC
夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),A(-2,-5),B(4,-13).
(1)求
AB
的坐標(biāo)及|
AB
|

(2)若
OC
=
OA
+
OB
,
OD
=
OA
-
OB
,求
OC
OD
的坐標(biāo);
(3)求
OA
OB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面直角坐標(biāo)系中,A(cosx,sinx),B(1,1),
OA
+
OB
=
OC
,f(x)=|
OC
|2
(Ⅰ)求f(x)的最小正周期和對稱中心;
(Ⅱ)求f(x)在區(qū)間[0,2π]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面直角坐標(biāo)系中,角α的始邊與x正半軸重合,終邊與單位圓(圓心是原點(diǎn),半徑為1的圓)交于點(diǎn)P.若角α在第
一象限,且tanα=
4
3
.將角α終邊逆時(shí)針旋轉(zhuǎn)
π
3
大小的角后與單位圓交于點(diǎn)Q,則點(diǎn)Q的坐標(biāo)為( 。

查看答案和解析>>

同步練習(xí)冊答案