6.函數(shù)f(x)=asin(πx+α)+bcos(πx+β)+1008(a,b,α,β均為非零實(shí)數(shù)),若f(2016)=16,則f(2017)=2000.

分析 由條件利用誘導(dǎo)公式求得 asinα+bcosβ=-992,從而求得f (2017)的值.

解答 解:∵f(x)=asin(πx+α)+bcos(πx+β)+1008,其中a,b,α,β均為非零實(shí)數(shù),
若f(2016)=asin(2016π+α)+bcos(2016π+β)+1008=asinα+bcosβ+1008=16,
∴asinα+bcosβ=-992,
則 f (2017)=asin(2017π+α)+bcos(2017π+β)+1008=-asinα-bcosβ+1008=2000.
故答案為:2000.

點(diǎn)評(píng) 本題主要考查利用誘導(dǎo)公式進(jìn)行化簡(jiǎn)求值,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知△ABC滿足∠BAC=60°,BC=2,對(duì)于△ABC外接圓上一點(diǎn)D,滿足∠BCD=45°,則BD=( 。
A.$\sqrt{6}$B.$\sqrt{3}$C.$\frac{2\sqrt{3}}{3}$D.$\frac{2\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,AE⊥平面ABC,AE∥BD,AB=BC=CA=BD=2AE=2,F(xiàn)為CD中點(diǎn).
(Ⅰ)求證:EF⊥平面BCD;
(Ⅱ)求二面角C-DE-A的正弦值;
(Ⅲ)求點(diǎn)A到平面CDE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.函數(shù)f(x)=$\frac{cos\frac{π}{2}x}{x+\frac{1}{x}}$的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,已知四邊形ABCD和ABEG均為平行四邊形,點(diǎn)E在平面ABCD內(nèi)的射影恰好為點(diǎn)A,以BD為直徑的圓經(jīng)過(guò)點(diǎn)A,C,AG的中點(diǎn)為F,CD的中點(diǎn)為P,且AD=AB=AE
(Ⅰ)求證:平面EFP⊥平面BCE
(Ⅱ)求二面角P-EF-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.“直線ax+3y+3=0和直線4x+(a+1)y+4=0平行”的充要條件是“a=( 。
A.-4或3B.-$\frac{3}{7}$C.-3D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)命題p:實(shí)數(shù)x滿足x2-6ax-16a2<0(a≠0);命題q:實(shí)數(shù)x滿足$\frac{1}{8}$≤2x≤16,
(1)若a=1時(shí),命題p∨q為真,同時(shí)命題p∧q為假,求實(shí)數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.如果小明家的瓷都晚報(bào)規(guī)定在每天下午的4:30~6:30之間的任何一個(gè)時(shí)間隨機(jī)地被送到,他一家人在下午6:00~7:00之間的任何一個(gè)時(shí)間隨機(jī)地開始晚餐,瓷都晚報(bào)在晚餐前被送到小明家的概率是$\frac{15}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若函數(shù)f(x)=$\left\{{\begin{array}{l}{{{(\frac{1}{4})}^x},x∈[-2017,0)}\\{{4^x},x∈[0,2017]}\end{array}}$,則f(log23)=9.

查看答案和解析>>

同步練習(xí)冊(cè)答案