已知向量面
AB
=(-2,-1,3),
AC
=(1,-3,2),若向量
a
分別與
AB
,
AC
垂直,且|
a
|=
3
,則向量
a
的坐標(biāo)為
 
考點(diǎn):平面向量坐標(biāo)表示的應(yīng)用
專題:空間向量及應(yīng)用
分析:設(shè)
a
=( x,y,z),進(jìn)而構(gòu)造方程組,解方程組即可求出向量
a
的坐標(biāo).
解答: 解:設(shè)
a
=( x,y,z),
AB
=(-2,-1,3),
AC
=(1,-3,2),向量
a
分別與
AB
,
AC
垂直,且|
a
|=
3
,
-2x-y+3z=0
x-3y+2z=0
x2+y2+z2=1
,
解得x=y=z=±1,
a
=(1,1,1),或
a
=(-1,-1,-1),
故答案為:(1,1,1),(-1,-1,-1)
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是向量模的運(yùn)算及向量垂直的坐標(biāo)表示,是平面向量的綜合題,熟練掌握平面向量模的計(jì)算公式,及向量平行和垂直的坐標(biāo)運(yùn)算公式是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,BC=24.AC,AB邊上的中線長(zhǎng)之和等于39.
(Ⅰ)求△ABC重心M的軌跡方程;
(Ⅱ)若M是(Ⅰ)中所求軌跡上的一點(diǎn),且∠BMC=60°,求△BMC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列
1
2
,-2,
9
2
,-8,
25
2
…的一個(gè)通項(xiàng)公式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(3x)+8x,則
lim
△x→0
f(1-2△x)-f(1)
△x
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,若a10=10,a19=100,前n項(xiàng)和Sn=0,則n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且對(duì)任意的x∈R恒有f(x+1)=f(x-1),已知當(dāng)x∈[0,1]時(shí),
f(x)=cos
πx
2
,則以下正確命題的序號(hào)是
 

①?x∈R,f(1-x)=f(1+x);
②函數(shù)f(x)在(1,2)上是減函數(shù),在(2,3)上是增函數(shù);
③f(x)的最大值是1,最小值是0;
④f(x)的一個(gè)對(duì)稱中心是(5,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三個(gè)數(shù)a,b,c成等比數(shù)列,三個(gè)數(shù)b,m,a成等差數(shù)列和三個(gè)數(shù)b,n,c成等差數(shù)列,則
a
m
+
c
n
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的焦距為2,且橢圓短軸的兩個(gè)三等分點(diǎn)與一個(gè)焦點(diǎn)構(gòu)成正三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)若以k(k≠0)為斜率的直線l與橢圓E相交于兩個(gè)不同的點(diǎn)A,B,且線段AB的垂直平分線與兩坐標(biāo)軸圍成的三角形的面積為
1
16
,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若拋物線y2=ax(a>0)上存在兩點(diǎn)M,N關(guān)于直線y=x-2對(duì)稱,則a的取值范圍是(  )
A、0<a<
10
3
B、0<a<
8
3
C、0<a<2
D、0<a<
4
3

查看答案和解析>>

同步練習(xí)冊(cè)答案