7.已知不等式|x-2|<3的解集為A,函數(shù)y=ln(1-x)的定義域?yàn)锽,則圖中陰影部分表示的集合為(  )
A.{x∈R|-1<x<1}B.{x∈R|1≤x<5}C.{x∈R|1<x<5}D.{x∈R|x≥1}

分析 由韋恩圖中陰影部分表示的集合為A∩(∁RB),然后利用集合的基本運(yùn)算進(jìn)行求解即可.

解答 解:A={x||x-2|<3}={x|-1<x<5},B={x|y=ln(1-x)}={x|1-x>0}={x|x<1},
則∁UB={x|x≥1},
由韋恩圖中陰影部分表示的集合為A∩(∁UB),
∴A∩(∁UB)={x|1≤x<5},
故選:B

點(diǎn)評 本題主要考查集合的基本運(yùn)算,利用韋恩圖確定集合關(guān)系,然后利用數(shù)軸求基本運(yùn)算是解決此類問題的基本方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知a<0,則“ax0=b”的充要條件是( 。
A.?x∈R,$\frac{1}{2}$ax2-bx≥$\frac{1}{2}$ax02-bx0B.?x∈R,$\frac{1}{2}$ax2-bx≤$\frac{1}{2}$ax02-bx0
C.?x∈R,$\frac{1}{2}$ax2-bx≤$\frac{1}{2}$ax02-bx0D.?x∈R,$\frac{1}{2}$ax2-bx≥$\frac{1}{2}$ax02-bx0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知方程$\frac{x^2}{4-k}+\frac{y^2}{k-2}$=1表示橢圓,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.直棱柱ABCD-A1B1C1D1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,AB=2AD=2CD=2.P為A1B1的中點(diǎn)
(1)求證:DP∥平面ACB1
(2)求證:平面DPD1∥平面CBB1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知直線l與橢圓4x2+9y2=36相交于A,B兩點(diǎn),弦AB的中點(diǎn)坐標(biāo)為(1,1),則直線l的方程為4x+9y-13=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.把$2sinx({\sqrt{3}sinx+cosx})-\sqrt{3}$化為Asin(ωx+φ)(A>0,ω>0,φ∈[0,2π])的形式2sin(2x+$\frac{5π}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知cot(sinθ)•tan(cosθ)>0,角θ是第幾象限的角一,三.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知$α∈({0\;,\;\;\frac{π}{2}})$,$sinα=\frac{3}{5}$,則$cos({π-\frac{α}{2}})$=-$\frac{3\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列寫法中正確的是( 。
A.0∈∅B.0∪∅={∅}C.0⊆∅D.∅⊆{0}

查看答案和解析>>

同步練習(xí)冊答案