【題目】已知函數(shù),,若關(guān)于x的方程有3個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)a的取值集合為________.
【答案】
【解析】
由,根據(jù)關(guān)于 x的方程有3個(gè)不同的實(shí)數(shù)根,分所以方程在有1個(gè)根,在有2個(gè)根和方程在有2個(gè)根,在有1個(gè)根,利用判別式法和導(dǎo)數(shù)法求解.
,
因?yàn)殛P(guān)于 x的方程有3個(gè)不同的實(shí)數(shù)根,
如圖所示:
則.
當(dāng)時(shí),若方程有1個(gè)實(shí)數(shù)根,
聯(lián)立得,即,
則,
解得:,
此時(shí),
令,
,
當(dāng)時(shí),,當(dāng)時(shí),,
所以時(shí),函數(shù)取得極小值:,
又,
所以當(dāng)時(shí),方程在有1個(gè)根,在有2個(gè)根,符合題意.
當(dāng)時(shí),若方程有2個(gè)實(shí)數(shù)根,
則,解得:,
此時(shí)則需方程在有1個(gè)根,
令,
所以,
當(dāng)時(shí),,當(dāng)時(shí),,
所以時(shí),函數(shù)取得極小值:,
令,
則,
解得,
所以,符合題意.
綜上:若關(guān)于x的方程有3個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)a的取值集合為
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】動(dòng)點(diǎn)到點(diǎn)的距離與到直線(xiàn)的距離的比值為.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)過(guò)點(diǎn)的直線(xiàn)與點(diǎn)的軌跡交于兩點(diǎn),,設(shè)點(diǎn),到直線(xiàn)的距離分別為,,當(dāng)時(shí),求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知x與y之間的幾組數(shù)據(jù)如表:
x | 1 | 2 | 3 | 4 |
y | 1 | m | n | 4 |
如表數(shù)據(jù)中y的平均值為2.5,若某同學(xué)對(duì)m賦了三個(gè)值分別為1.5,2,2.5,得到三條線(xiàn)性回歸直線(xiàn)方程分別為,,,對(duì)應(yīng)的相關(guān)系數(shù)分別為,,,下列結(jié)論中錯(cuò)誤的是( )
參考公式:線(xiàn)性回歸方程中,其中,.相關(guān)系數(shù).
A.三條回歸直線(xiàn)有共同交點(diǎn)B.相關(guān)系數(shù)中,最大
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有邊長(zhǎng)均為1的正方形正五邊形正六邊形及半徑為1的圓各一個(gè),在水平桌面上無(wú)滑動(dòng)滾動(dòng)一周,它們的中心的運(yùn)動(dòng)軌跡長(zhǎng)分別為,,,,則( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司對(duì)旗下的甲、乙兩個(gè)門(mén)店在1至9月份的營(yíng)業(yè)額(單位:萬(wàn)元)進(jìn)行統(tǒng)計(jì)并得到如圖折線(xiàn)圖.
下面關(guān)于兩個(gè)門(mén)店?duì)I業(yè)額的分析中,錯(cuò)誤的是( )
A.甲門(mén)店的營(yíng)業(yè)額折線(xiàn)圖具有較好的對(duì)稱(chēng)性,故而營(yíng)業(yè)額的平均值約為32萬(wàn)元
B.根據(jù)甲門(mén)店的營(yíng)業(yè)額折線(xiàn)圖可知,該門(mén)店?duì)I業(yè)額的平均值在[20,25]內(nèi)
C.根據(jù)乙門(mén)店的營(yíng)業(yè)額折線(xiàn)圖可知,其營(yíng)業(yè)額總體是上升趨勢(shì)
D.乙門(mén)店在這9個(gè)月份中的營(yíng)業(yè)額的極差為25萬(wàn)元
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是各項(xiàng)均為正數(shù)的無(wú)窮數(shù)列,且滿(mǎn)足,.
(1)若,,求a的值;
(2)設(shè)數(shù)列滿(mǎn)足,其前n項(xiàng)的和為.
①求證:是等差數(shù)列;
②若對(duì)于任意的,都存在,使得成立.求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小區(qū)為了調(diào)查本小區(qū)業(yè)主對(duì)物業(yè)服務(wù)滿(mǎn)意度的真實(shí)情況,對(duì)本小區(qū)業(yè)主進(jìn)行了調(diào)查,調(diào)查中問(wèn)了兩個(gè)問(wèn)題1:你的手機(jī)尾號(hào)是不是奇數(shù)?問(wèn)題2:你是否滿(mǎn)意物業(yè)的服務(wù)?調(diào)查者設(shè)計(jì)了一個(gè)隨機(jī)化裝置,其中裝有大小、形狀和質(zhì)量完全相同的白球和紅球,每個(gè)被調(diào)查者隨機(jī)從裝置中摸到紅球和白球的可能性相同,其中摸到白球的業(yè)主回答第一個(gè)問(wèn)題,摸到紅球的業(yè)主回答第二個(gè)問(wèn)題,回答“是”的人往一個(gè)盒子中放一個(gè)小石子,回答“否”的人什么都不要做由于問(wèn)題的答案只有“是”和“否”,而且回答的是哪個(gè)問(wèn)題別人并不知道,因此被調(diào)查者可以毫無(wú)顧慮地給出符合實(shí)際情況的答案.已知某小區(qū)80名業(yè)主參加了問(wèn)卷,且有47名業(yè)主回答了“是”,由此估計(jì)本小區(qū)對(duì)物業(yè)服務(wù)滿(mǎn)意的百分比大約為( )
A.85%B.75%C.63.5%D.67.5%
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,點(diǎn)在橢圓上,點(diǎn)在圓上,且圓上的所有點(diǎn)均在橢圓外,若的最小值為,且橢圓的長(zhǎng)軸長(zhǎng)恰與圓的直徑長(zhǎng)相等,則下列說(shuō)法正確的是( )
A.橢圓的焦距為B.橢圓的短軸長(zhǎng)為
C.的最小值為D.過(guò)點(diǎn)的圓的切線(xiàn)斜率為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為,其中.
(Ⅰ)寫(xiě)出直線(xiàn)的普通方程和曲線(xiàn)的直角坐標(biāo)方程;
(Ⅱ)在平面直角坐標(biāo)系中,設(shè)直線(xiàn)與曲線(xiàn)相交于,兩點(diǎn).若點(diǎn)恰為線(xiàn)段的三等分點(diǎn),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com