在△ABC中,已知面積S,a=2,b=2,求sinA

答案:
解析:


提示:

  [提示]由面積關(guān)系,求得角C,再利用余弦定理,求出c,就可以借助正弦定理來求sinA了.

  [說明]解三角形,通常是正弦定理和余弦定理的綜合運(yùn)用,一般地,已知條件中有一個(gè)是角求另外的角時(shí),運(yùn)用正弦定理較為簡便.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱柱ABC-中,已知CC1=BB1=2,BC=1,∠BCC1=
π
3
,AB⊥側(cè)面BB1C1C,
(1)求直線C1B與底面ABC所成角正切值;
(2)在棱CC1(不包含端點(diǎn)C,C1)上確定一點(diǎn)E的位置,使得EA⊥EB1(要求說明理由).
(3)在(2)的條件下,若AB=
2
,求二面角A-EB1-A1的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱臺(tái)A1B1C1-ABC中,已知A1A⊥底面ABC,A1A=A1B1=B1C1=a,B1B⊥BC,且B1B和底面ABC所成的角45°,求這個(gè)棱臺(tái)的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•大連二模)△ABC中,已知AB=2
7
,BC=3
7
,AC=7.D是邊AC上一點(diǎn),將△ABD沿BD折起,得到三棱錐A-BCD.若該三棱錐的頂點(diǎn)A在底面BCD的射影M在線段BC上,設(shè)BM=x,則x的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•姜堰市模擬)如圖,在三棱錐P-ABC中,已知AB=AC=2,PA=1,∠PAB=∠PAC=∠BAC=60°,點(diǎn)D、E分別為AB、PC的中點(diǎn).
(1)在AC上找一點(diǎn)M,使得PA∥面DEM;
(2)求證:PA⊥面PBC;
(3)求三棱錐P-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•聊城一模)如圖,在三棱錐P-ABC中,已知PC⊥平面ABC,點(diǎn)C在平面PBA內(nèi)的射影D在直線PB上.
(1)求證:AB⊥平面PBC;
(2)設(shè)AB=BC,直線PA與平面ABC所成的角為45°,求異面直線AP與BC所成的角;
(3)在(2)的條件下,求二面角C-PA-B的余弦值.

查看答案和解析>>

同步練習(xí)冊答案