6.已知 p:A={ x||x-2|≤4},q:B={ x|( x-1-m )( x-1+m )≤0}( m>0),若¬p是¬q的必要不充分條件,求實(shí)數(shù) m 的取值范圍.

分析 分別設(shè)出A,B,由¬p是¬q的必要不充分條件,得出不等式組,解出即可.

解答 解:p:A={ x||x-2|≤4}=[-2,6],
B={ x|( x-1-m )( x-1+m )≤0}=[1-m,1+m](m>0),
∵¬p是¬q的必要不充分條件,
∴q是p的必要不充分條件,
∴A?B,
∴$\left\{\begin{array}{l}{m>0}\\{1-m≤-2}\\{1+m≥6}\end{array}\right.$,解得:m≥5,
∴m的范圍是:[5,+∞).
故 m 的取值范圍為[5,+∞).

點(diǎn)評(píng) 本題考查了充分必要條件,四種命題的關(guān)系,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖是一個(gè)幾何體的三視圖,若它的體積是3$\sqrt{3}$,則a=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.畫出函數(shù)f(x)=|x2-4x-5|的圖象,并寫出函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在5道題中有3道理科題和2道文科題,如果不放回地依次抽2道題,在第一次抽到理科題的條件下,第二次抽到理科題的概率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若函數(shù)f(x)=$\sqrt{{x}^{2}+ax+1}$的定義域?yàn)镽,則實(shí)數(shù)a取值范圍是( 。
A.[-2,2]B.(2,+∞)C.(-∞,2)D.(-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.某幾何體的三視圖如圖所示,根據(jù)圖中標(biāo)出的數(shù)據(jù),可得這個(gè)幾何體的表面積為4+4$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)[x]表示不大于x的最大整數(shù),例如:[-2.1]=-3,[3.4]=3.集合A={x|[x]2-2[x]=3},集合B={x|0<x+2<5},則A∩B等于( 。
A.{1,$\sqrt{7}$}B.{-1,$\sqrt{7}$}C.{1,$\sqrt{7}$,-$\sqrt{7}$}D.{1,-1,$\sqrt{7}$,-$\sqrt{7}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)$f(x)={x^m}-\frac{2}{x},且\;f(4)=\frac{7}{2}$.
(Ⅰ)判斷f(x)的奇偶性;
(Ⅱ)寫出不等式f(x)>1的解集(不要求寫出解題過程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.安排7位工作人員在5月1日到5月7日值班,每人值班一天,其中甲不能安排在5月1日、乙不能安排在5月7日,不同的安排方法共有3720種.(用數(shù)字作答)

查看答案和解析>>

同步練習(xí)冊(cè)答案