如圖,已知點是離心率為的橢圓:上的一點,斜率為的直線交橢圓于,兩點,且、、三點互不重合.
(1)求橢圓的方程;(2)求證:直線,的斜率之和為定值.
(1);(2)詳見解析
解析試題分析:(1)根據(jù)題意及列方程組可得的值。即可得此橢圓方程。(2)設出的坐標及直線的方程與橢圓方程聯(lián)立消掉可得關于的方程,根據(jù)題意可知判別式應大于0,根據(jù)韋達定理可得此方程的兩根之和與兩根之積。即點橫坐標間的關系,代入直線方程,可得點縱坐標之間的關系。然后根據(jù)斜率公式可得斜率之和,將其化簡問題即可得證。
試題解析:由題意,可得,代入
得,又, 2分
解得,,,
所以橢圓的方程. 5分
(2)證明:設直線的方程為,又三點不重合,∴,設,,
由得
所以
① ② 8分
設直線,的斜率分別為,,
則
(*) 10分
將①、②式代入(*),
整理得,
所以,即直線的斜率之和為定值. 12分
考點:1橢圓的標準方程;2直線和圓錐曲線的位置關系問題;3定值問題。
科目:高中數(shù)學 來源: 題型:解答題
如圖已知拋物線:過點,直線交于,兩點,過點且平行于軸的直線分別與直線和軸相交于點,.
(1)求的值;
(2)是否存在定點,當直線過點時,△與△的面積相等?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的短半軸長為,動點在直線(為半焦距)上.
(1)求橢圓的標準方程;
(2)求以為直徑且被直線截得的弦長為的圓的方程;
(3)設是橢圓的右焦點,過點作的垂線與以為直徑的圓交于點,
求證:線段的長為定值,并求出這個定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓經(jīng)過點,離心率為.
(1)求橢圓的方程;
(2)直線與橢圓交于兩點,點是橢圓的右頂點.直線與直線分別與軸交于點,試問以線段為直徑的圓是否過軸上的定點?若是,求出定點坐標;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
給定橢圓:,稱圓心在原點,半徑為的圓是橢圓的“準圓”.若橢圓的一個焦點為,其短軸上的一個端點到的距離為.
(1)求橢圓的方程和其“準圓”方程;
(2)點是橢圓的“準圓”上的動點,過點作橢圓的切線交“準圓”于點.
(。┊旤c為“準圓”與軸正半軸的交點時,求直線的方程,
并證明;
(ⅱ)求證:線段的長為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖;已知橢圓C:的離心率為,以橢圓的左頂點T為圓心作圓T:設圓T與橢圓C交于點M、N.
(1)求橢圓C的方程;
(2)求的最小值,并求此時圓T的方程;
(3)設點P是橢圓C上異于M,N的任意一點,且直線MP,NP分別與軸交于點R,S,O為坐標原點。求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知雙曲線過點(3,-2),且與橢圓4x2+9y2=36有相同的焦點.
(1)求雙曲線的標準方程;
(2)求以雙曲線的右準線為準線的拋物線的標準方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知梯形ABCD中|AB|=2|CD|,點E滿足=λ,雙曲線過C、D、E三點,且以A、B為焦點.當≤λ≤時,求雙曲線離心率e的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com