16.已知二次函數(shù)f(x)=ax2+2x+c(a≠0),函數(shù)f(x)對(duì)于任意的都滿足條件f(1+x)=f(1-x).
(1)若函數(shù)f(x)的圖象與y軸交于點(diǎn)(0,2),求函數(shù)f(x)的解析式;
(2)若函數(shù)f(x)在區(qū)間(0,1)上有零點(diǎn),求實(shí)數(shù)c的取值范圍.

分析 (1)函數(shù)f(x)對(duì)于任意的都滿足條件f(1+x)=f(1-x),得到函數(shù)f(x)的對(duì)稱軸為x=1,即可求出a的值,再根據(jù)函數(shù)f(x)的圖象與y軸交于點(diǎn)(0,2),求出c的值,問題得以解決.
(2)根據(jù)函數(shù)零點(diǎn)的性質(zhì)結(jié)合二次函數(shù)的性質(zhì)即可得到結(jié)論.

解答 解:(1)函數(shù)f(x)對(duì)于任意的都滿足條件f(1+x)=f(1-x),
∴函數(shù)f(x)的對(duì)稱軸為x=1,
∴-$\frac{1}{a}$=1,
解得a=-1,
∵函數(shù)f(x)的圖象與y軸交于點(diǎn)(0,2),
∴c=2,
∴f(x)=-x2+2x+2,
(2)∵函數(shù)f(x)在區(qū)間(0,1)上有零點(diǎn),
∴f(0)f(1)<0,
∴c(-1+2+c)<0,
解得-1<c<0

點(diǎn)評(píng) 本題主要考查函數(shù)解析式的求法和一元二次函數(shù)的零點(diǎn)的問題,根據(jù)函數(shù)零點(diǎn)的性質(zhì),以及函數(shù)和方程之間的關(guān)系進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(1,5),則2$\overrightarrow{a}$+$\overrightarrow$的坐標(biāo)為(5,7).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(1)已知α為第二象限角,且 sinα=$\frac{{\sqrt{15}}}{4}$,求$\frac{{sin(α+\frac{π}{4})}}{sin2α+cos2α+1}$的值
(2)求值:$\frac{1}{sin10°}$-$\frac{\sqrt{3}}{sin80°}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{a}{3}$x3-$\frac{1}{2}$(a+1)x2+x-$\frac{1}{3}$(a∈R).
(1)若a<0,求函數(shù)f(x)的極值;
(2)當(dāng)a≤$\frac{1}{2}$時(shí),判斷函數(shù)f(x)在區(qū)間[0,2]上零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知條件p:x>1,條件q:$\frac{1}{x}$<1,則p是q的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列函數(shù)中,在(0,+∞)上單調(diào)遞增的是( 。
A.y=$\frac{1}{x}$B.y=1-x2C.y=($\frac{1}{10}$)xD.y=lgx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)集合A={x|x2-2x=0},B={0,1},則集合A∪B的子集的個(gè)數(shù)為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知向量$\overrightarrow a=(1,-2),\overrightarrow b=(1,1),\overrightarrow e$為單位向量,若$\overrightarrow e$與$\overrightarrow a$垂直,$\overrightarrow e$與$\overrightarrow b$的夾角是鈍角,則向量$\overrightarrow e$的坐標(biāo)為($-\frac{2\sqrt{5}}{5},-\frac{\sqrt{5}}{5}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,三個(gè)內(nèi)角∠A,∠B,∠C所對(duì)的邊分別為a,b,c,sin2A-sin2C=sinAsinB-sin2B.
(1)求∠C的值;
(2)若$\overrightarrow{AB}$•$\overrightarrow{AC}$+$\overrightarrow{BA}$•$\overrightarrow{BC}$=4,求a+b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案