【題目】定義在R上的函數(shù)f(x)>0,對任意x,y∈R都有f(x+y)=f(x) f(y)成立,且當(dāng)x>0時,f(x)>1.
(1)求f(0)的值;
(2)求證f(x)在R上是增函數(shù);
(3)若f(k3x)f(3x﹣9x﹣2)<1對任意x∈R恒成立,求實數(shù)k的取值范圍.
【答案】(1)f(0)=1;(2)見解析;(3)k<
【解析】
(1)利用賦值法求f(0)的值;
(2)根據(jù)增函數(shù)定義進(jìn)行證明,其中利用條件“當(dāng)x>0時,f(x)>1”比較大小是解題關(guān)鍵;
(3)先根據(jù)單調(diào)性化簡不等式得32x﹣(1+k)3x+2>0,再分離變量轉(zhuǎn)化為求對應(yīng)函數(shù)y=3x+最值,最后根據(jù)基本不等式求函數(shù)最值,即得結(jié)果.
(1)令x=0,y=1,則f(0+1)=f(0)f(1),所以f(1)=f(0)f(1),
∵當(dāng)x>0時,f(x)>1,∴f(1)>1,∴f(0)=1;
(2)設(shè)x1<x2,則x2﹣x1>0,∵當(dāng)x>0時,f(x)>1,∴f(x2﹣x1)>1
∴f(x2)=f(x2﹣x1+x1)=f(x2﹣x1)f(x1)>f(x1),∴f(x)在R上是增函數(shù);
(3)∵f(x)在R上是增函數(shù),f(k3x) f(3x﹣9x﹣2)=f(k 3x+3x﹣9x﹣2)<f(0),
∴32x﹣(1+k)3x+2>0對任意x∈R成立.∴1+k<3x+,∵3x>0,∴3x+≥.
∴k<.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于一個具有正南正北、正東正西方向規(guī)則布局的城鎮(zhèn)街道,從一點到另一點的距離是在南北方向上行進(jìn)的距離加上在東西方向上行進(jìn)的距離,這種距離即“曼哈頓距離”,也叫“出租車距離”.對于平面直角坐標(biāo)系中的點和,兩點間的“曼哈頓距離”.
(1)如圖,若為坐標(biāo)原點,,兩點坐標(biāo)分別為和,求,,;
(2)若點滿足,試在圖中畫出點的軌跡,并求該軌跡所圍成圖形的面積;
(3)已知函數(shù),試在圖象上找一點,使得最小,并求出此時點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為弘揚(yáng)民族文化,某學(xué)校學(xué)生全員參與舉行了“我愛國學(xué),傳誦經(jīng)典”考試,并從中抽取名學(xué)生的成績(百分制)作為樣本,得到頻率分布直方圖如圖所示.成績落在中的人數(shù)為20.
(1)求和的值;
(2)根據(jù)樣本估計總體的思想,估計該校學(xué)生數(shù)學(xué)成績的平均數(shù)和中位數(shù);(同一組數(shù)據(jù)中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表)
(3)若成績在80分以上(含80分)為“國學(xué)小達(dá)人”.若在樣本中,利用分層抽樣的方法從“國學(xué)小達(dá)人”中隨機(jī)抽取5人,再從中抽取2人贈送一套國學(xué)經(jīng)典,記“抽中的2名學(xué)生成績都不低于90分”為事件,求;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某群體的人均通勤時間,是指單日內(nèi)該群體中成員從居住地到工作地的平均用時.某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當(dāng)中()的成員自駕時,自駕群體的人均通勤時間為(單位:分鐘),而公交群體的人均通勤時間不受影響,恒為分鐘,試根據(jù)上述分析結(jié)果回答下列問題:
(1)當(dāng)在什么范圍內(nèi)時,公交群體的人均通勤時間少于自駕群體的人均通勤時間?
(2)求該地上班族的人均通勤時間的表達(dá)式;討論的單調(diào)性,并說明其實際意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x,且此函數(shù)圖象過點(1,2).
(1)求實數(shù)m的值;
(2)判斷函數(shù)f(x)的奇偶性并證明;
(3)討論函數(shù)f(x)在(0,1)上的單調(diào)性,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在五面體中,四邊形是矩形,,,,,為的中點,為線段上一點,且.
(Ⅰ)求證:平面;
(Ⅱ)求證:;
(Ⅲ)求證:平面平面.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com