【題目】定義在R上的函數(shù)fx)>0,對任意x,yR都有fx+y)=fx fy)成立,且當(dāng)x0時,fx)>1

1)求f0)的值;

2)求證fx)在R上是增函數(shù);

3)若fk3xf3x9x2)<1對任意xR恒成立,求實數(shù)k的取值范圍.

【答案】(1)f0)=1;(2)見解析;(3)k

【解析】

1)利用賦值法求f0)的值;

2)根據(jù)增函數(shù)定義進(jìn)行證明,其中利用條件“當(dāng)x0時,fx)>1”比較大小是解題關(guān)鍵;

3)先根據(jù)單調(diào)性化簡不等式得32x﹣(1+k3x+20,再分離變量轉(zhuǎn)化為求對應(yīng)函數(shù)y=3x+最值,最后根據(jù)基本不等式求函數(shù)最值,即得結(jié)果.

1)令x0,y1,則f0+1)=f0f1),所以f(1)=f0f1),

∵當(dāng)x0時,fx)>1,∴f1)>1,∴f0)=1;

2)設(shè)x1x2,則x2x10,∵當(dāng)x0時,fx)>1,∴fx2x1)>1

fx2)=fx2x1+x1)=fx2x1fx1)>fx1),∴fx)在R上是增函數(shù);

3)∵fx)在R上是增函數(shù),fk3x f3x9x2)=fk 3x+3x9x2)<f0),

32x﹣(1+k3x+20對任意xR成立.∴1+k3x+,∵3x0,∴3x+.

k

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于一個具有正南正北、正東正西方向規(guī)則布局的城鎮(zhèn)街道,從一點到另一點的距離是在南北方向上行進(jìn)的距離加上在東西方向上行進(jìn)的距離,這種距離即曼哈頓距離,也叫出租車距離”.對于平面直角坐標(biāo)系中的點,兩點間的曼哈頓距離.

1)如圖,若為坐標(biāo)原點,,兩點坐標(biāo)分別為,求,;

2)若點滿足,試在圖中畫出點的軌跡,并求該軌跡所圍成圖形的面積;

3)已知函數(shù),試在圖象上找一點,使得最小,并求出此時點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為弘揚(yáng)民族文化,某學(xué)校學(xué)生全員參與舉行了我愛國學(xué),傳誦經(jīng)典考試,并從中抽取名學(xué)生的成績(百分制)作為樣本,得到頻率分布直方圖如圖所示.成績落在中的人數(shù)為20

1)求的值;

2)根據(jù)樣本估計總體的思想,估計該校學(xué)生數(shù)學(xué)成績的平均數(shù)和中位數(shù);(同一組數(shù)據(jù)中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表)

3)若成績在80分以上(含80分)為國學(xué)小達(dá)人.若在樣本中,利用分層抽樣的方法從國學(xué)小達(dá)人中隨機(jī)抽取5人,再從中抽取2人贈送一套國學(xué)經(jīng)典,記抽中的2名學(xué)生成績都不低于90為事件,求;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,,,,的中點,的中點,

(1)求證: 平面;

(2)中點,證明:平面

(3)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某群體的人均通勤時間,是指單日內(nèi)該群體中成員從居住地到工作地的平均用時.某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當(dāng))的成員自駕時,自駕群體的人均通勤時間為(單位:分鐘),而公交群體的人均通勤時間不受影響,恒為分鐘,試根據(jù)上述分析結(jié)果回答下列問題:

(1)當(dāng)在什么范圍內(nèi)時,公交群體的人均通勤時間少于自駕群體的人均通勤時間?

(2)求該地上班族的人均通勤時間的表達(dá)式;討論的單調(diào)性,并說明其實際意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=x,且此函數(shù)圖象過點(12).

1)求實數(shù)m的值;

2)判斷函數(shù)fx)的奇偶性并證明;

3)討論函數(shù)fx)在(0,1)上的單調(diào)性,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在五面體中,四邊形是矩形,,,,的中點,為線段上一點,且.

(Ⅰ)求證:平面;

(Ⅱ)求證:

(Ⅲ)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的單調(diào)減區(qū)間為.

1)求、的值及極值;

2)若對,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在六條棱長分別為2、33、45、5的所有四面體中,最大的體積是多少?證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案