【題目】某校高三(1)班的一次數(shù)學(xué)測試成績的莖葉圖和頻舉分布直方圖都受到不同程度的破壞,可見部分
如下.
(1)求全班人數(shù)及分?jǐn)?shù)在內(nèi)的頻數(shù);
(2)估計該班的平均分?jǐn)?shù),并計算頻率分布直方圖中的矩形的高;
(3)若要從分?jǐn)?shù)在內(nèi)的試卷中任取兩份分析學(xué)生的失分情況,在抽取的試卷中,求至少有一份分?jǐn)?shù)在內(nèi)的概率.
【答案】(1)4;(2);(3)。
【解析】【試題分析】(1)借助題設(shè)條件中的頻率頻率分布表。頻數(shù)、樣本容量及頻率之間的關(guān)系進行求解;(2)先估算出其平均數(shù),再運用加法運算求出班的平均分?jǐn)?shù),及頻率分布直方圖中的矩形的高;(3)借助列舉法列舉出所有符合題設(shè)條件的基本事件,再依據(jù)古典概型的計算公式進行求解:
解:(1)由題圖知,分?jǐn)?shù)在內(nèi)的頻數(shù)為2,頻率為,
全班人數(shù)為,
所以分?jǐn)?shù)在內(nèi)的頻數(shù)為.
(2)分?jǐn)?shù)在內(nèi)的總分為,
分?jǐn)?shù)在內(nèi)的總分為,
分?jǐn)?shù)在內(nèi)的總分為,
分?jǐn)?shù)在內(nèi)的總分為,
分?jǐn)?shù)在內(nèi)的總分為,
所以該班的平均分?jǐn)?shù)約為.
頻率分布直方圖中的矩形的高為.
(3)將分?jǐn)?shù)在內(nèi)的四份試卷編號為1,2,3,4, 分?jǐn)?shù)在內(nèi)的兩份試卷編號為5,6,故所有基本事件為: ,共 15 個,其中,至少有一份試卷的分?jǐn)?shù)在內(nèi)包括的基本事件有9個.
故所求概率是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,AP=1,AD=2,E為線段PD上一點,記 =λ. 當(dāng)λ= 時,二面角D﹣AE﹣C的平面角的余弦值為 .
(1)求AB的長;
(2)當(dāng) 時,求異面直線BP與直線CE所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第12界全運會于2013年8月31日在遼寧沈陽順利舉行,組委會在沈陽某大學(xué)招募了12名男志愿者和18名女志愿者,將這30名志愿者的身高編成如圖所示的莖葉圖(單位: ),身高在175以上(包括175)定義為“高個子”,身高在175以下(不包括175)定義為“非高個子”.
(1)如果用分層抽樣的方法從“高個子”和“非高個子”中共抽取5人,再從這5人中選2人,求至少有一人是“高個子”的概率?
(2)若從身高180以上(包括180)的志愿者中選出男、女各一人,求這兩人身高相差5以上的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)y=2cos(x﹣ )的圖象上所有的點的橫坐標(biāo)縮短到原來的 倍(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)的圖象( )
A.關(guān)于點(﹣ ,0)對稱
B.關(guān)于點( ,0)對稱
C.關(guān)于直線x=﹣ 對稱
D.關(guān)于直線x= 對稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國上是世界嚴(yán)重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節(jié)約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標(biāo)準(zhǔn)(噸),用水量不超過的部分按平價收費,超過的部分按議價收費,為了了解全市民月用水量的分布情況,通過抽樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照, ,…, 分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中 的值;
(Ⅱ)已知該市有80萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;
(Ⅲ)若該市政府希望使的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計的值,并說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市理論預(yù)測2000年到2004年人口總數(shù)與年份的關(guān)系如下表所示
年份200x(年) | 0 | 1 | 2 | 3 | 4 |
人口數(shù)y(十)萬 | 5 | 7 | 8 | 11 | 19 |
(1)請畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),求出Y關(guān)于x的線性回歸方程Y=bx+a;
(3)據(jù)此估計2005年該城市人口總數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,已知直線上兩點的極坐標(biāo)分別為.
(1)設(shè)為線段上的動點,求線段取得最小值時,點的直角坐標(biāo);
(2)求以為為直徑的圓的參數(shù)方程,并求在(1)條件下直線與圓相交所得的弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)F1 , F2分別是橢圓 =1的左、右焦點.
(1)若M是該橢圓上的一點,且∠F1MF2=120°,求△F1MF2的面積;
(2)若P是該橢圓上的一個動點,求 的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cos2x+2sin2x+2sinx.
(1)將函數(shù)f(2x)的圖象向右平移個單位得到函數(shù)g(x)的圖象,若x∈,求函數(shù)g(x)的值域;
(2)已知a,b,c分別為△ABC中角A,B,C的對邊,且滿足f(A)=+1,A∈,a=2,b=2,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com