A. | $-\frac{{4\sqrt{3}}}{5}$ | B. | $-\frac{{3\sqrt{3}}}{5}$ | C. | $\frac{{3\sqrt{3}}}{5}$ | D. | $\frac{{4\sqrt{3}}}{5}$ |
分析 利用同角三角函數(shù)的基本關(guān)系求得sin(α+$\frac{2π}{3}$)的值,再利用兩角和差的三角公式求得 cosα=cos[(α+$\frac{2π}{3}$)-$\frac{2π}{3}$]以及sinα=sin[(α+$\frac{2π}{3}$)-$\frac{2π}{3}$]的值,可得要求式子的值.
解答 解:∵$cos(α+\frac{2}{3}π)=\frac{4}{5},-\frac{π}{2}<α<0$,∴sin(α+$\frac{2π}{3}$)=$\sqrt{{1-cos}^{2}(α+\frac{2π}{3})}$=$\frac{3}{5}$,
而 cosα=cos[(α+$\frac{2π}{3}$)-$\frac{2π}{3}$]=cos(α+$\frac{2π}{3}$)cos$\frac{2π}{3}$+sin(α+$\frac{2π}{3}$)sin$\frac{2π}{3}$=$\frac{3\sqrt{3}-4}{10}$,
∴sinα=sin[(α+$\frac{2π}{3}$)-$\frac{2π}{3}$]=sin(α+$\frac{2π}{3}$)cos$\frac{2π}{3}$-cos(α+$\frac{2π}{3}$)sin$\frac{2π}{3}$=$\frac{-3-4\sqrt{3}}{10}$,
則$sin(α+\frac{π}{3})+sinα$=sinαcos$\frac{π}{3}$+cosαsin$\frac{π}{3}$+sinα=$\frac{3}{2}$sinα+$\frac{\sqrt{3}}{2}$cosα=-$\frac{4\sqrt{3}}{5}$,
故選:A.
點(diǎn)評 本題主要考查同角三角函數(shù)的基本關(guān)系,兩角和差的三角公式的應(yīng)用,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 最小值為e-1,沒有最大值 | B. | 最大值為e2-2,沒有最小值 | ||
C. | 既沒有最大值,也沒有最小值 | D. | 最小值為e-1,最大值為e2-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1)∪(2,+∞) | B. | (-∞,-2)∪(1,+∞) | C. | (1,2) | D. | (-2,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定價x(元/kg) | 10 | 20 | 30 | 40 | 50 | 60 |
年銷量y(kg) | 1150 | 643 | 424 | 262 | 165 | 86 |
z=2lny | 14.1 | 12.9 | 12.1 | 11.1 | 10.2 | 8.9 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com