8.若函數(shù)$f(x)=\left\{\begin{array}{l}1-{x^2},x<0\\{x^2}-x-1,x>0\end{array}\right.$,則f(-1)+f(2)的值為( 。
A.5B.-1C.1D.0

分析 先分別求出f(-1)=1-(-1)2=0,f(2)=22-2-1=1,由此能求出f(-1)+f(2).

解答 解:∵$f(x)=\left\{\begin{array}{l}1-{x^2},x<0\\{x^2}-x-1,x>0\end{array}\right.$,
∴f(-1)=1-(-1)2=0,
f(2)=22-2-1=1,
∴f(-1)+f(2)=0+1=1.
故選:C.

點(diǎn)評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知向量$\overrightarrow{a}$=(-3,1),$\overrightarrow$=(1,-2),則$\overrightarrow{a}$在$\overrightarrow$方向上的投影為$-\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=xlnx-a(x-1)2-x+1.
(1)當(dāng)a=0時,求f(x)的單調(diào)區(qū)間與極值;
(2)當(dāng)x>1且a≥$\frac{1}{2}$時,證明:f(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=x+$\frac{4}{x}$
(1)判斷f(x)的奇偶性;
(2)證明f(x)在區(qū)間(2,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.對于集合A,B,C,A={x|x2-5x+a≥0},B={x|m≤x≤m+7},若對于?a∈C,?m∈R,使得A∪B=R.求集合C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合A={y|y=log2x,x>1},B={y|2y-1<0},則A∩B=(  )
A.(0,$\frac{1}{2}$)B.(0,1)C.($\frac{1}{2}$,1)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知α,β是兩個不同的平面,l,m是兩條不同的直線,且l?α,m?β,則( 。
A.若α∥β,則l∥mB.若l∥m,則α∥βC.若α⊥β,則l⊥mD.若l⊥β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)y=3-4sin x-cos2x的最大值7和最小值-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知x>0,y>0,且$\frac{2}{x}$+$\frac{1}{y}$=2,若x+2y≥a恒成立,則實(shí)數(shù)a的最大值為(  )
A.4B.2C.6D.8

查看答案和解析>>

同步練習(xí)冊答案