16.在△ABC中,角A、B、C的對(duì)邊a,b,c滿足b2+c2=a2+bc,且bc=8,則△ABC的面積等于(  )
A.$2\sqrt{3}$B.4C.$4\sqrt{3}$D.8

分析 由已知利用余弦定理可求A,進(jìn)而利用三角形面積公式即可計(jì)算得解.

解答 解:∵b2+c2=a2+bc,可得:b2+c2-a2=bc,
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{bc}{2bc}$=$\frac{1}{2}$,
∵A∈(0,π),
∴A=$\frac{π}{3}$,
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}×8×\frac{\sqrt{3}}{2}$=2$\sqrt{3}$.
故選:A.

點(diǎn)評(píng) 本題主要考查了余弦定理,三角形面積公式在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知{an}為等比數(shù)列且滿足a6-a2=30,a3-a1=3,則數(shù)列{an}的前5項(xiàng)和S5=( 。
A.15B.31C.40D.121

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.長(zhǎng)為$4\sqrt{2}$的線段AB在雙曲線x2-y2=1的一條漸近線上移動(dòng),C為拋物線y=-x2-2上的點(diǎn),則△ABC面積的最小值是( 。
A.$\frac{7}{2}$B.$\frac{7}{5}$C.$\frac{{7\sqrt{2}}}{4}$D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x≥0}\\{lg(y-1)≤0}\\{2x-y≤2}\end{array}\right.$,若a<$\frac{y}{x+1}$恒成立,則a的取值范圍為(-∞,$\frac{2}{5}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知數(shù)列{an}的前n項(xiàng)和為Sn,且an=2-2Sn(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=log3(1-Sn)(n∈N*),若$\frac{1}{{{b_2}{b_3}}}+\frac{1}{{{b_3}{b_4}}}+…+\frac{1}{{{b_n}{b_{n+1}}}}=\frac{25}{51}$,求自然數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知變量x,y(x,y∈R)滿足約束條件$\left\{{\begin{array}{l}{x-y≤0}\\{x+y≥5}\\{y-3≤0}\end{array}}\right.$,若不等式(x+y)2≥c(x2+y2)(c∈R)恒成立,則實(shí)數(shù)c的最大值為$\frac{25}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)命題p:方程x2+m2y2=1表示焦點(diǎn)在y軸上的橢圓,命題q:?x∈R,x2+2mx+2m≥0,若p且q為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.函數(shù)f(x)=ln(x-e)的定義域?yàn)椋╡,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知集合A={x|-1≤x≤2},B={x|-1<x<4,x∈Z},則A∩B=( 。
A.{0,1,2}B.[0,2]C.{0,2}D.(0,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案