分析 (1)設各項均為正數(shù)的等比數(shù)列{an}的公比為q>0,由a5=2a3+a4,且S5=62,可得${a}_{3}{q}^{2}=2{a}_{3}+{a}_{3}q$,$\frac{{a}_{1}({q}^{5}-1)}{q-1}$=62,解得q,a1,即可得出.
(2)${S}_{n}=\frac{2({2}^{n}-1)}{2-1}$=2n+1-2.可得bn=$\frac{{a}_{n+1}}{{S}_{n}{S}_{n+1}}$=$\frac{{2}^{n+1}}{({2}^{n+1}-2)({2}^{n+2}-2)}$=$\frac{1}{{2}^{n+1}-2}-\frac{1}{{2}^{n+2}-2}$,利用“裂項求和”方法即可得出.
解答 解:(1)設各項均為正數(shù)的等比數(shù)列{an}的公比為q>0,∵a5=2a3+a4,且S5=62,
∴${a}_{3}{q}^{2}=2{a}_{3}+{a}_{3}q$,$\frac{{a}_{1}({q}^{5}-1)}{q-1}$=62,解得q=2=a1,
∴an=2n.
(2)${S}_{n}=\frac{2({2}^{n}-1)}{2-1}$=2n+1-2.
bn=$\frac{{a}_{n+1}}{{S}_{n}{S}_{n+1}}$=$\frac{{2}^{n+1}}{({2}^{n+1}-2)({2}^{n+2}-2)}$=$\frac{1}{{2}^{n+1}-2}-\frac{1}{{2}^{n+2}-2}$,
∴數(shù)列{bn}的前n項和為Tn=$(\frac{1}{{2}^{2}-2}-\frac{1}{{2}^{3}-2})$+$(\frac{1}{{2}^{3}-2}-\frac{1}{{2}^{4}-2})$+…+$(\frac{1}{{2}^{n+1}-2}-\frac{1}{{2}^{n+2}-2})$=$\frac{1}{2}-\frac{1}{{2}^{n+2}-2}$.
點評 本題考查了“裂項求和”方法、等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①③ | B. | ①④ | C. | ②③ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{6}}{2}$ | B. | $\frac{\sqrt{10}}{2}$ | C. | $\frac{5}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | “$sinθ=\frac{1}{2}$”是“θ=30°”的充分不必要條件 | |
B. | 命題p:?n0∈N,${2^{n_0}}>1000$,則¬p:?n∈N,2n≤1000 | |
C. | 命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0” | |
D. | 命題“若?x∈(0,+∞),則2x<3x”是真命題 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | 3 | D. | -3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com