15.如果實(shí)數(shù)x,y滿足關(guān)系$\left\{\begin{array}{l}x-y+1≥0\\ x+y-2≤0\\ x≥0\\ y≥0\end{array}\right.$,則$z=\frac{2x+y-7}{x-3}$的取值范圍為[-$\frac{9}{5}$,3].

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用z的幾何意義即可得到結(jié)論.

解答 解:$z=\frac{2x+y-7}{x-3}$=2+$\frac{y-1}{x-3}$
z的幾何意義是區(qū)域內(nèi)的點(diǎn)到D(3,1)的斜率加2,
作出不等式組$\left\{\begin{array}{l}x-y+1≥0\\ x+y-2≤0\\ x≥0\\ y≥0\end{array}\right.$對(duì)應(yīng)的平面區(qū)域如圖:
由$\left\{\begin{array}{l}{x-y+1=0}\\{x+y-2=0}\end{array}\right.$,可得A($\frac{1}{2}$,$\frac{3}{2}$),B(2,0),
由圖象可知,當(dāng)AD的斜率最小為$\frac{2×\frac{1}{2}+\frac{3}{2}-7}{\frac{1}{2}-3}$=-$\frac{9}{5}$,
BD的斜率最大為$\frac{2×2+0-7}{2-3}$=3,
故z的取值范圍:[-$\frac{9}{5}$,3],
故答案為:[-$\frac{9}{5}$,3].

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用直線斜率的幾何意義是解決本題的關(guān)鍵,注意要數(shù)形結(jié)合.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知f(x)=x2-1,g(x)=10(x+1),各項(xiàng)均為正數(shù)的數(shù)列{an}滿足a1=2,(an+1-an)•g(an)+f(an)=0,${b_n}=\frac{9}{10}(n+2)({a_n}-1)$.
(Ⅰ)求證:數(shù)列{an-1}是等比數(shù)列;
(Ⅱ)當(dāng)n取何值時(shí),bn取最大值,并求出最大值;
(Ⅲ)若$\frac{{t}^{m}}{_{m}}$<$\frac{{t}^{m+1}}{_{m+1}}$對(duì)任意m∈N*恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知x、y都是正實(shí)數(shù),那么“x≥2或y≥2”是“x2+y2≥8”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.求函數(shù)y=x2-2ax+1在[-1,2]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知α=-1920°
(1)將α寫成β+2kπ(k∈Z,0≤β<2π)的形式,并指出它是第幾象限角
(2)求與α終邊相同的角θ,滿足-4π≤θ<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.從數(shù)字0,1,2,3,4,5中任取兩個(gè)數(shù)組成兩位數(shù),則是偶數(shù)的概率為( 。
A.$\frac{13}{36}$B.$\frac{12}{25}$C.$\frac{13}{25}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,設(shè)橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦點(diǎn)為F1,F(xiàn)2,上頂點(diǎn)為A,點(diǎn)B和點(diǎn)F2關(guān)于F1對(duì)稱,且AB⊥AF2,A,B,F(xiàn)2三點(diǎn)確定的圓M恰好與直線$x-\sqrt{3}y-3=0$相切.
(1)求橢圓的方程C;
(2)過(guò)F1作一條與兩坐標(biāo)軸都不垂直的直線l交橢圓于P,Q零點(diǎn),在x軸上是否存在點(diǎn)N,使得NF1恰為△PNQ的內(nèi)角平分線,若存在,求出點(diǎn)N的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.定義在R上的函數(shù)y=f(x),f(0)≠0,當(dāng)x>0時(shí),f(x)>1,且對(duì)任意的a、b∈R,有f(a+b)=f(a)•f(b).則下列結(jié)論成立的是①②(填序號(hào))
①f(0)=1;             
②對(duì)任意的x∈R,恒有f(x)>0;
③f(x)是R上的減函數(shù);
④若f(x)•f(2x-x2)>1,則x的取值范圍是[0,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.為了調(diào)查學(xué)生星期天晚上學(xué)習(xí)時(shí)間利用問(wèn)題,某校從2015-2016學(xué)年高二年級(jí)1000名學(xué)生(其中走讀生450名,住宿生550名)中,采用分層抽樣的方法抽取n名學(xué)生進(jìn)行問(wèn)卷調(diào)查,根據(jù)問(wèn)卷取得了這n名同學(xué)每天晚上學(xué)習(xí)時(shí)間(單位:分鐘)的數(shù)據(jù),按照以下區(qū)間分為八組①[0,30),②[30,60),③[60,90),④[90,120),⑤[120,150),⑥[150,180),⑦[180,210),⑧[210,240),得到頻率分布直方圖如圖,已知抽取的學(xué)生中星期天晚上學(xué)習(xí)時(shí)間少于60分鐘的人數(shù)為5人.
(1)求n的值;
(2)如果“學(xué)生晚上學(xué)習(xí)時(shí)間達(dá)到兩小時(shí)”,則認(rèn)為其利用時(shí)間充分,否則,認(rèn)為利用時(shí)間不充分;對(duì)抽取的n名學(xué)生,完成下列2×2列聯(lián)表:
利用時(shí)間充分利用時(shí)間不充分合計(jì)
走讀生30  
住校生 10 
合計(jì)  
據(jù)此資料,是否有95%的把握認(rèn)為“學(xué)生利用時(shí)間是否充分”與“走讀、住!庇嘘P(guān)?
(3)若在第①組、第②組共抽出2人調(diào)查影響有效利用時(shí)間的原因,求抽出的2人中第①組、第②組各有1人的概率.

附:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$

p(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.83

查看答案和解析>>

同步練習(xí)冊(cè)答案