9.向面積為S的平行四邊形ABCD內(nèi)任投一點M,則△MCD的面積小于$\frac{S}{3}$的概率為$\frac{2}{3}$.

分析 先求出△MCD的面積等于$\frac{S}{3}$時,對應(yīng)的位置,然后根據(jù)幾何概型的概率公式求相應(yīng)的面積,即可得到結(jié)論.

解答 解:設(shè)△MCD的高為ME,ME的反向延長線交AB于F,當(dāng)“△MCD的面積等于$\frac{S}{3}$”時,即ME=$\frac{2}{3}$EF,
過M作GH∥AB,如圖,則滿足△MCD的面積小于$\frac{S}{3}$的點在?CDGH中,由幾何概型的公式得到△MCD的面積小于$\frac{S}{3}$的概率為 $\frac{\frac{2S}{3}}{S}=\frac{2}{3}$;
故答案為:$\frac{2}{3}$.

點評 本題主要考查幾何概型的概率概率的計算,選擇面積之比是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在Rt△ABC中,$A=\frac{π}{2}$,AB=4,AC=3,則$\overrightarrow{CA}•\overrightarrow{CB}$=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=|2x-3|+ax-6(a是常數(shù),a∈R).
(Ⅰ)當(dāng)a=1時,求不等式f(x)≥0的解集;
(Ⅱ)當(dāng)x∈[-1,1]時,不等式f(x)<0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知△ABC中,$tanA=-\frac{5}{12}$,則cosA=( 。
A.$\frac{12}{13}$B.$-\frac{12}{13}$C.$-\frac{5}{13}$D.$\frac{5}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若函數(shù)y=ln(2x)+$\frac{e}{x}$+a(其中e為自然對數(shù)的底數(shù))的最小值為ln2,則a的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若f(x)=asin(x+$\frac{π}{4}$)+bsin(x-$\frac{π}{4}$)(ab≠0)是偶函數(shù),則有序?qū)崝?shù)對(a,b)可以是( 。
A.(1,$\sqrt{3}$)B.(-1,$\sqrt{3}$)C.(1,1)D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知四棱臺ABCD-A1B1C1D1的下底面是邊長為4的正方形,AA1=4,且AA1⊥面ABCD,點P為DD1的中點,點Q在BC上,BQ=3QC,DD1與面ABCD所成角的正切值為2.
(Ⅰ)證明:PQ∥面A1ABB1
(Ⅱ)求證:AB1⊥面PBC,并求三棱錐Q-PBB1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知冪函數(shù)f(x)=(n2+2n-2)${x}^{{n}^{2}-3n}$(n∈Z)的圖象關(guān)于y軸對稱,且在(0,+∞)上時減函數(shù),則n的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.復(fù)數(shù)z滿足z•(2-i)=3-4i(其中i為虛數(shù)單位),則復(fù)數(shù)|$\frac{z}{i}$|=( 。
A.$\frac{2\sqrt{5}}{3}$B.2C.$\frac{5\sqrt{5}}{3}$D.$\sqrt{5}$

查看答案和解析>>

同步練習(xí)冊答案