設(shè)對一切實(shí)數(shù)x,y=x2-4ax+2a+6的值均為非負(fù)數(shù),求函數(shù)f(a)=2-a|a+3|的最值.

解:∵當(dāng)x∈R時,恒有y≥0,

∴Δ=(-4a)2-4(2a+6)=16a2-8a-24=8(2a-3)(a+1)≤0.

∴-1≤a≤.

∴a+3>0.

∴f(a)=2-a(a+3)=-(a+)2+(-1≤a≤).

∵-[-1,],∴f(a)在區(qū)間[-1,]上為減函數(shù).

∴ymin=f()=-,ymax=f(-1)=4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知:函數(shù)f(x)對一切實(shí)數(shù)x,y都有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(0)的值.
(2)求f(x)的解析式.
(3)已知a∈R,設(shè)P:當(dāng)0<x<
12
時,不等式f(x)+3<2x+a恒成立;Q:當(dāng)x∈[-2,2]時,g(x)=f(x)-ax是單調(diào)函數(shù).如果滿足P成立的a的集合記為A,滿足Q成立的a的集合記為B,求A∩CRB(R為全集).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

本題設(shè)有(1)(2)(3)三個選考題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題計(jì)分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)已知矩陣M=
1a
b1
,N=
c2
0d
,且MN=
20
-20

(Ⅰ)求實(shí)數(shù)a,b,c,d的值;(Ⅱ)求直線y=3x在矩陣M所對應(yīng)的線性變換下的像的方程.
(2)在直角坐標(biāo)系xoy中,直線l的參數(shù)方程為
x=3-
2
2
t
y=
5
-
2
2
t
(t為參數(shù)).在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為ρ=2
5
sinθ

(Ⅰ)求圓C的直角坐標(biāo)方程;(Ⅱ)設(shè)圓C與直線l交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為(3,
5
)

求|PA|+|PB|.
(3)已知函數(shù)f(x)=|x-a|.
(Ⅰ)若不等式f(x)≤3的解集為{x|-1≤x≤5},求實(shí)數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x+5)≥m對一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镽,若|f(x)|≤|x|對一切實(shí)數(shù)x均成立,則稱函數(shù)f(x)為Ω函數(shù).
(Ⅰ)試判斷函數(shù)f1(x)=xsinx、f2(x)=
e-x
ex+1
和f3(x)=
x2
x2+1
中哪些是Ω函數(shù),并說明理由;
(Ⅱ)若函數(shù)y=f(x)是定義在R上的奇函數(shù),且滿足對一切實(shí)數(shù)x1、x2,均有|f(x1)-f(x2)|≤|x1-x2|,求證:函數(shù)f(x)一定是Ω函數(shù);
(Ⅲ)求證:若a>0,則函數(shù)f(x)=ln(x2+a)-lna是Ω函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計(jì)分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
變換T1是逆時針旋轉(zhuǎn)90°的旋轉(zhuǎn)變換,對應(yīng)的變換矩陣為M1,變換T2對應(yīng)的變換矩陣是M2=
11
01
;
(I)求點(diǎn)P(2,1)在T1作用下的點(diǎn)Q的坐標(biāo);
(II)求函數(shù)y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
(2)選修4-4:極坐標(biāo)系與參數(shù)方程
從極點(diǎn)O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點(diǎn)P,使得OM•OP=12.
(Ⅰ)求動點(diǎn)P的極坐標(biāo)方程;
(Ⅱ)設(shè)R為l上的任意一點(diǎn),試求RP的最小值.
(3)選修4-5:不等式選講
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集為{x|x≥
1
2
或x≤-
5
6
}
,求實(shí)數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實(shí)數(shù)x恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案