直線y=x+
3
2
被曲線y=
1
2
x2截得線段的中點(diǎn)到原點(diǎn)的距離為( 。
A、29
B、
29
C、
29
4
D、
29
2
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:直線y=x+
3
2
與曲線y=
1
2
x2聯(lián)立,求出中點(diǎn)的坐標(biāo),即可求出中點(diǎn)到原點(diǎn)的距離.
解答: 解:直線y=x+
3
2
與曲線y=
1
2
x2聯(lián)立可得x2-2x-3=0,
∴x=-1或3
∴中點(diǎn)橫坐標(biāo)為1,縱坐標(biāo)為
5
2
,
∴中點(diǎn)到原點(diǎn)的距離為
1+
25
4
=
29
2

故選:D.
點(diǎn)評(píng):本題考查直線與拋物線的位置關(guān)系,考查學(xué)生的計(jì)算能力,確定中點(diǎn)的坐標(biāo)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
ln(x+1)
的定義域?yàn)椋ā 。?/div>
A、(-1,0)∪(0,+∞)
B、[-1,0)∪(0,+∞)
C、[-1,+∞)
D、(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,已知a1=
1
3
,a4+a5=
16
3
,若an=33,則n=( 。
A、50B、49C、48D、47

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}前六項(xiàng)是1,2,4,8,16,它的一個(gè)通項(xiàng)公式是( 。
A、an=2n
B、an=2n
C、an=2n+1
D、an=2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)關(guān)于x的一元二次方程x2+2ax+b2=0.若a是從0,1,2,3四個(gè)數(shù)中任取的一個(gè)數(shù),b是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),則上述方程有實(shí)根的概率( 。
A、
1
4
B、
3
4
C、
1
2
D、
5
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等腰三角形的腰長(zhǎng)是底邊長(zhǎng)的2倍,那么它的頂角的余弦值為( 。
A、
5
18
B、
3
4
C、
3
2
D、
7
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

分別寫出下列命題的逆命題、逆否命題,并判斷它們的真假:
(1)若q<1,則方程x2+2x+q=0有實(shí)根;
(2)若x2+y2=0,則x,y全為零.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四棱錐S-ABCD,底面ABCD為平行四邊形,側(cè)面SBC⊥底面ABCD,已知∠DAB=135°,BC=2
2
,SB=SC=AB=2,F(xiàn)為線段SB的中點(diǎn).
(Ⅰ)求證:SD∥平面CFA;
(Ⅱ)證明:SA⊥BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x3+x2+mx+1在實(shí)數(shù)集上是單調(diào)函數(shù),則m的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案