17.設(shè)f(x)=$\frac{x^2}{{1+{x^2}}}$,則f($\frac{1}{2016}$)+f($\frac{1}{2015}$)+…+f(1)+f(2)+…+f(2016)=( 。
A.4031B.$\frac{4031}{2}$C.4032D.2016

分析 由已知函數(shù)解析式可得f(x)+f($\frac{1}{x}$)=1,則答案可求.

解答 解:∵f(x)=$\frac{x^2}{{1+{x^2}}}$,∴f(x)+f($\frac{1}{x}$)=$\frac{{x}^{2}}{1+{x}^{2}}+\frac{\frac{1}{{x}^{2}}}{1+\frac{1}{{x}^{2}}}=\frac{{x}^{2}}{1+{x}^{2}}+\frac{1}{1+{x}^{2}}=1$,
則f($\frac{1}{2016}$)+f($\frac{1}{2015}$)+…+f(1)+f(2)+…+f(2016)
=[f($\frac{1}{2016}$)+f(2016)]+[f($\frac{1}{2015}$)+f(2015)]+…+[f($\frac{1}{2}$)+f(2)]+f(1)=2015+$\frac{1}{2}$=$\frac{4031}{2}$.
故選:B.

點評 本題考查函數(shù)值的求法,關(guān)鍵是明確f(x)+f($\frac{1}{x}$)=1,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知雙曲線C的方程為$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1,其左、右焦點分別是F1、F2,已知點M坐標(biāo)為(2,1),雙曲線C上點P(x0,y0 ) (x0>0,y0>0)滿足$\frac{\overrightarrow{P{F}_{1}}•\overrightarrow{M{F}_{1}}}{P{F}_{1}}$=$\frac{{\overrightarrow{{F_2F}_1}•\overrightarrow{{MF}_1}}}{{{F_2F}_1}}$,則S${\;}_{△PM{F}_{1}}$-S${\;}_{△PM{F}_{2}}$=( 。
A.-1B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)Sn是等比數(shù)列{an}的前n項和,滿足S3,S2,S4成等差數(shù)列,已知a1+2a3+a4=4.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)數(shù)列{bn},滿足bn=$\frac{1}{{{{log}_2}|{a_n}|}}$,n∈N*,記Tn=b1b2+b2b3+b3b4+…+bnbn+1,n∈N*,若對于任意n∈N*,都有aTn<n+4恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若實數(shù)a,b滿足a+b=2,則2a+2b的最小值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)是定義在實數(shù)集R上的不恒為零的偶函數(shù),且對任意實數(shù)x都有xf(x+1)=(1+x)f(x),則f[f($\frac{2015}{2}$)]的值是(  )
A.$\frac{2015}{2}$B.1C.0D.2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow$=(cosy,siny),若y=x+$\frac{4π}{3}$,則$\overrightarrow{a}$與$\overrightarrow{a}$+$\overrightarrow$夾角的余弦為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.用根式的形式表示下列各式(a>0)
(1)a${\;}^{\frac{1}{2}}$;(2)a${\;}^{\frac{1}{5}}$;(3)a${\;}^{\frac{3}{4}}$;(4)a${\;}^{\frac{7}{5}}$;(5)a${\;}^{-\frac{2}{3}}$;(6)a${\;}^{-\frac{3}{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{2}$=1的一個焦點為(2,0),則橢圓的離心率是$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知正方方體ABCD-A1B1C1D1
(1)異面直線BA1和CB1 的夾角是多少?
(2)A1B和平面CDA1B1所成的角?
(3)平面CDA1B1和平面ABCD所成二面角的大?
(此題寫出必要的步驟或說明,畫出必要的輔助線)

查看答案和解析>>

同步練習(xí)冊答案