14.已知命題p:?x∈R,x2+2x+1>0,則?p是真命題(填“真命題”、“假命題”).

分析 直接判斷原命題的真假,即可判斷命題的否定命題的真假.

解答 解:命題p:?x∈R,x2+2x+1>0,∵△=4-4=0,∴x=-1時(shí),命題p不成立,∴?p是真命題.
故答案為:真命題.

點(diǎn)評(píng) 本題考查命題的否定,命題的真假的判斷,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知函數(shù)f(x)=m(x+m+5),g(x)=2x-2,若任意的x∈R,總有f(x)<0或g(x)<0,則m的取值范圍是-6<m<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)l是直線,α,β是兩個(gè)不同的平面,則下列四個(gè)命題:
(1)若l∥α,l∥β,則α∥β     
(2)若l∥α,l⊥β,則α⊥β
(3)若α⊥β,l⊥α,則l⊥β     
(4)若α⊥β,l∥α,則l⊥β
中真命題有( 。﹤(gè).
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在邊長(zhǎng)為2的正方形ABCD中任取一點(diǎn)P,則△PAB、△PBC、△PCD、△PDA的面積均大于$\frac{1}{6}$的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{9}$C.$\frac{1}{36}$D.$\frac{25}{36}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)$f(x)={sin^2}ωx+(2\sqrt{3}sinωx-cosωx)cosωx-λ$的圖象關(guān)于直線x=π對(duì)稱,其中ω,λ為常數(shù),且ω∈($\frac{1}{2}$,1).
(1)求函數(shù)f (x)的最小正周期;
(2)若存在${x_0}∈[0,\frac{3π}{5}]$,使f(x0)=0,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.求函數(shù)$y={2^{{x^2}-2x+4}}$的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若sinθ+cosθ∈(-1,0),則θ一定是( 。
A.第二象限角或第三象限的角B.第一象限角或第四象限的角
C.第三象限角或第四象限的角D.終邊在直線y=-x左下方的角

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)數(shù)列{an}的前n項(xiàng)為Sn,點(diǎn)$(n,\frac{S_n}{n}),\;(n∈{N^*})$均在函數(shù)$y=\frac{1}{2}x+\frac{1}{2}$的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)設(shè)${b_n}=\frac{1}{{{a_n}•{a_{n+1}}}}$,Tn為數(shù)列{bn}的前n項(xiàng)和,求使得Tn<$\frac{m}{20}$對(duì)所有n∈N*都成立的最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知sinα=$\frac{3}{5}$,α∈(0,$\frac{π}{2}$),tanβ=$\frac{1}{4}$,則 tan(α+β)=$\frac{16}{13}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案