已知函數(shù)f(x)=(x2+ax+b)ex在點(diǎn)(0,f(0))處的切線方程是y=-2x+1,其中e是自然對數(shù)的底數(shù).
(Ⅰ) 求實(shí)數(shù)a、b的值;
(Ⅱ) 求函數(shù)f(x)在區(qū)間[-2,3]上的值域.
考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)先求出f(x)的導(dǎo)數(shù)f′(x),則f′(0)=-2和點(diǎn)(0,f(0))在直線y=-2x+1上,得出方程組,求出a、b的值.
(2)求出f(x)的導(dǎo)數(shù),判斷f(x)在區(qū)間[-2,3]上的單調(diào)性,再求出其值域.
解答: 解:(Ⅰ) 由f(x)=(x2+ax+b)ex,得f'(x)=[x2+(a+2)x+a+b]ex,
因?yàn)楹瘮?shù)f(x)在點(diǎn)(0,f(0))處的切線方程是y=-2x+1,
所以
f(0)=1
f′(0)=-2
b=1
a+b=-2
解得a=-3,b=1.(6分)
(Ⅱ)由(Ⅰ)知f(x)=(x2-3x+1)ex,f'(x)=(x2-x-2)ex=(x+1)(x-2)ex,(8分)
令f'(x)=0,得x1=-1或x2=2.f(x)與f'(x)的關(guān)系如下表:
x-2(-2,-1)-1(-1,2)2(2,3)3
f'(x)+0-0+
f(x)11e-2
5
e
-e2e3
由上表可知,函數(shù)f(x)在區(qū)間[-2,3]上的值域是[-e2,e3].(12分)
點(diǎn)評:本題考查了導(dǎo)數(shù)在求切線上的應(yīng)用,利用導(dǎo)數(shù)求函數(shù)要閉區(qū)間上的值域,是一道導(dǎo)數(shù)的綜合題,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=2x-1,則不等式(x-1)[f(x)-f(-x)]≤0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)
10i
2-i
=x+yi(x∈R,y∈R),則x+y=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M的一般方程為x2+y2-8x+6y=0,則下列說法中不正確的是( 。
A、圓M的圓心為(4,-3)
B、圓M被x軸截得的弦長為8
C、圓M的半徑為25
D、圓M被y軸截得的弦長為6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

邊長為2的正方形ABCD中,E∈AB,F(xiàn)∈BC
(1)如果E、F分別為AB、BC中點(diǎn),分別將△AED、△DCF、△BEF沿ED、DF、FE折起,使A、B、C重合于點(diǎn)P.證明:在折疊過程中,A點(diǎn)始終在某個(gè)圓上,并指出圓心和半徑.
(2)如果F為BC的中點(diǎn),E是線段AB上的動點(diǎn),沿DE、DF將△AED、△DCF折起,使A、C重合于點(diǎn)P,求三棱錐P-DEF體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

半徑為1cm,中心角為150°的角所對的弧長為(  )cm.
A、
2
3
B、
3
C、
5
6
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)左右頂點(diǎn),B(2,0)過橢圓C的右焦點(diǎn)F的直線交橢圓與M,N,交直線x=4于點(diǎn)P,且直線PA,PF,PB的斜率成等差數(shù)列,T(
1
4
,0)點(diǎn)是定點(diǎn)
(1)求橢圓C的方程;
(2)求三角形MNT面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的二次方程(
a
a
)x2+4(
a
b
)x+(
b
b
)=0沒有實(shí)數(shù)根,則向量
a
b
的夾角的范圍為( 。
A、[0,
π
6
B、[0,
π
3
)∪(
3
,π]
C、(
π
3
,π]
D、(
π
3
,
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
4
-
y2
9
=1
的漸近線方程是( 。
A、y=±
2
3
x
B、y=±
3
2
x
C、y=±
4
9
x
D、y=±
9
4
x

查看答案和解析>>

同步練習(xí)冊答案