如圖,在三棱柱ABC-A1B1C1中,B1B=B1A=AB=BC=2,∠B1BC=90°,D為AC的中點(diǎn),AB⊥B1D.
(Ⅰ)求證:平面ABB1A1⊥平面ABC;
(Ⅱ)求三棱錐C-BB1D的體積.
考點(diǎn):棱柱、棱錐、棱臺的體積,平面與平面垂直的判定
專題:綜合題,空間位置關(guān)系與距離
分析:(Ⅰ)取AB中點(diǎn)為O,連接OD,OB1,證明AB⊥平面B1OD,可得AB⊥OD,又OD⊥BB1,因?yàn)锳B∩BB1=B,即可證明平面ABB1A1⊥平面ABC;
(Ⅱ)證明B1O即點(diǎn)B1到平面BCD的距離,即可求三棱錐C-BB1D的體積.
解答: (Ⅰ)證明:取AB中點(diǎn)為O,連接OD,OB1
因?yàn)锽1B=B1A,所以O(shè)B1⊥AB.
又AB⊥B1D,OB1∩B1D=B1,
所以AB⊥平面B1OD,
因?yàn)镺D?平面B1OD,所以AB⊥OD.…(3分)
由已知,BC⊥BB1,又OD∥BC,
所以O(shè)D⊥BB1,因?yàn)锳B∩BB1=B,
所以O(shè)D⊥平面ABB1A1
又OD?平面ABC,所以平面ABC⊥平面ABB1A1.       …(6分)
(Ⅱ)解:三棱錐C-BB1D的體積=三棱錐B1-BCD的體積
由(Ⅰ)知,平面ABC⊥平面ABB1A1,平面ABC∩平面ABB1A1=AB,OB1⊥AB,OB1?平面ABB1A1
所以O(shè)B1⊥平面ABC,即OB1⊥平面BCD,B1O即點(diǎn)B1到平面BCD的距離,B1O=
3
…(9分)
S△BCD=
1
2
S△ABC=1
…(11分)
所以VC-BB1D=VB1-BCD=
1
3
×1×
3
=
3
3
…(12分)
點(diǎn)評:本題考查平面與平面垂直的證明,考查三棱錐的體積,解題時要認(rèn)真審題,注意空間思維能力的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在三棱柱ABC-A1B1C1中,已知AB=BC=2,∠ABC=90°,點(diǎn)A1在底面ABC的投影為B,且A1B=2
3

(1)證明:平面AA1B1B⊥平面BB1C1C;
(2)設(shè)P為B1C1上一點(diǎn),當(dāng)PA=
29
時,求二面角A1-AB-P的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的通項(xiàng)公式為an=2n,n∈N*,等比數(shù)列{bn}滿足b1=a1,b4=a8
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{bn}的前n項(xiàng)和Sn;
(Ⅲ)設(shè)cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
1
2
,右焦點(diǎn)到直線
x
a
+
y
b
=1的距離d=
21
7
,O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l與橢圓C交于A,B兩點(diǎn),以AB為直徑的圓過原點(diǎn)O,求O到直線l的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

家住H小區(qū)的王先生開車到C單位上班有L1、L2兩條路線(如圖),其中路線L1上有A1、A2、A3三個路口,各路口遇到紅燈的概率均為
1
2
;路線L2上有B1、B2兩個路口,各路口遇到紅燈的概率依次為
3
4
3
5

(1)若走路線L1,求最多遇到1次紅燈的概率;
(2)王先生經(jīng)過研究得到途中所產(chǎn)生的費(fèi)用如表:
路線距離(公里)行駛費(fèi)用(元/公里)遇紅燈時  費(fèi)用(元/次)
L1201.51.5
L23011
請你根據(jù)上述信息幫助王先生分析,選擇哪條路線上班更好些,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣A=
a2
73
的逆矩陣A-1=
b-2
-7a
,則ab=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某企業(yè)共有職工150人,其中高級職稱15人,中級職稱45人,一般職稱90人,現(xiàn)采用分層抽樣來抽取30人,各職稱人數(shù)分別為
 
 
,
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知矩形ABCD,AB=2,AD=1.若點(diǎn)E,F(xiàn),G,H分別在線段AB,BC,CD,DA上,且AE=BF=CG=DH,則四邊形EFGH面積的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=f(x)的圖象為開口向下的拋物線,且對任意x∈R都有f(1+x)=f(1-x).若向量
a
=(m,-1),
b
=(m,-2),則滿足不等式f(
a
b
)>f(-1)的m的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊答案