已知函數(shù)f(x)=a1x+a2x2+a3x3+…+anxnn∈N*a1、a2a3、……、an構(gòu)成一個(gè)數(shù)列{an},滿足f(1)=n2.
(1)求數(shù)列{an}的通項(xiàng)公式,并求;
(2)證明0<f()<1.
(1)(2)證明略
(1)解: {an}的前n項(xiàng)和Sn=a1+a2+…+an=f(1)=n2,
an=SnSn–1=n2–(n–1)2=2n–1(n≥2),又a1=S1=1滿足an=2n–1.
故{an}通項(xiàng)公式為an=2n–1(n∈N*)

(2)證明: ∵f()=1·+3·+…+(2n–1)        ①
f()=1·+3·+…+(2n–3)+(2n–1)  ②
①–②得:f()=1·+2·+2·+…+2·–(2n–1)·
f()=++++…+–(2n–1)=1– 
 (nN*)
∴0<<1,∴0<1–<1,即0<f()<1
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知是等差數(shù)列.
(1)是否成立?呢?為什么?
(2)是否成立?據(jù)此你能得出什么結(jié)論?
是否成立?你又能得出什么結(jié)論?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知曲線,從上的點(diǎn)軸的垂線,交于點(diǎn),再?gòu)狞c(diǎn)軸的垂線,交于點(diǎn),設(shè)

(1)求數(shù)列的通項(xiàng)公式;
(2)記,數(shù)列的前項(xiàng)和為,試比較的大小
(3)記,數(shù)列的前項(xiàng)和為,試證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列滿足,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)數(shù)列{an}的前n項(xiàng)和Sn=na+n(n-1)b,(n=1,2,…),ab是常數(shù)且b≠0.
(1)證明:{an}是等差數(shù)列.
(2)證明:以(an,-1)為坐標(biāo)的點(diǎn)Pn(n=1,2,…)都落在同一條直線上,并寫出此直線的方程.
(3)設(shè)a=1,b=,C是以(r,r)為圓心,r為半徑的圓(r>0),求使得點(diǎn)P1P2、P3都落在圓C外時(shí),r的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)An為數(shù)列{an}的前n項(xiàng)和,An= (an-1),數(shù)列{bn}的通項(xiàng)公式為bn=4n+3;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)把數(shù)列{an}與{bn}的公共項(xiàng)按從小到大的順序排成一個(gè)新的數(shù)列,證明:數(shù)列{dn}的通項(xiàng)公式為dn=32n+1;
(3)設(shè)數(shù)列{dn}的第n項(xiàng)是數(shù)列{bn}中的第r項(xiàng),Br為數(shù)列{bn}的前r項(xiàng)的和;Dn為數(shù)列{dn}的前n項(xiàng)和,Tn=BrDn,求 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某公司全年的利潤(rùn)為b元,其中一部分作為獎(jiǎng)金發(fā)給n位職工,獎(jiǎng)金分配方案如下:首先將職工按工作業(yè)績(jī)(工作業(yè)績(jī)均不相同)從大到小,由1到n排序,第1位職工得獎(jiǎng)金元,然后再將余額除以n發(fā)給第2位職工,按此方法將獎(jiǎng)金逐一發(fā)給每位職工,并將最后剩余部分作為公司發(fā)展基金.
(1)設(shè)ak(1≤kn)為第k位職工所得獎(jiǎng)金金額,試求a2,a3,并用k、nb表示ak(不必證明);
(2)證明akak+1(k=1,2,…,n-1),并解釋此不等式關(guān)于分配原則的實(shí)際意義;
(3)發(fā)展基金與nb有關(guān),記為Pn(b),對(duì)常數(shù)b,當(dāng)n變化時(shí),求Pn(b).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

 設(shè)各項(xiàng)均為正數(shù)的數(shù)列的前n項(xiàng)和為,對(duì)于任意正整數(shù)n,都有等式:成立,求的通項(xiàng)an.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知個(gè)實(shí)數(shù)成等差數(shù)列,個(gè)實(shí)數(shù)成等比數(shù)列,
             .

查看答案和解析>>

同步練習(xí)冊(cè)答案