【題目】若集合M滿足:x,y∈M,都有x+y∈M,xy∈M,則稱集合M是封閉的.顯然,整數(shù)集Z,有理數(shù)集Q都是封閉的.對于封閉的集合M(MR),f:M→M是從集合到集合的一個函數(shù), ①如果都有f(x+y)=f(x)+f(y),就稱是保加法的;
②如果x,y∈M都有f(xy)=f(x)f(y),就稱f是保乘法的;
③如果f既是保加法的,又是保乘法的,就稱f在M上是保運(yùn)算的.
在上述定義下,集合 封閉的(填“是”或“否”);若函數(shù)f(x)在Q上保運(yùn)算,并且是不恒為零的函數(shù),請寫出滿足條件的一個函數(shù)f(x)= .
【答案】是;f(x)=x,x∈Q
【解析】解:設(shè)x= m+n,y= a+b,m,n,a,b∈Q, ∴x+y= m+n+ a+b= (m+a)+(n+b),m+a,n+b∈Q,
即f(x+y)=f(x)+f(y),
∴xy=( m+n)( a+b)=3ma+ (mb+an)+bn= (mb+an)+(bn+3ma),mb,an,bn,3ma∈Q,
∴f(xy)=f(x)f(y),
∴上述定義下,集合 是封閉的,
當(dāng)f(x)=x,x∈Q滿足條件,
設(shè)m,n∈Q,
∴f(m+n)=m+n=f(m)+f(n),
f(mn)=mn=f(m)f(n),
所以答案是:是,f(x)=x,x∈Q
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣lnx,a∈R.
(1)當(dāng)a=1時,求函數(shù)f(x)在點 (1,f(1))處的切線方程;
(2)是否存在實數(shù)a,使f(x)的最小值為 ,若存在,求出a的值;若不存在,請說明理由;
(3)當(dāng)x∈(0,+∞)時,求證:e2x3﹣2x>2(x+1)lnx.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,g(x)=x2eax(a<0). (Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若對任意x1 , x2∈[0,2],f(x1)≥g(x2)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ln(x﹣1)+ax2+x+1,g(x)=(x﹣1)ex+ax2 , a∈R. (Ⅰ)當(dāng)a=1時,求函數(shù)f(x)在點(2,f(2))處的切線方程;
(Ⅱ)若函數(shù)g(x)有兩個零點,試求a的取值范圍;
(Ⅲ)證明f(x)≤g(x)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,角A,B,C的對邊分別是a,b,c且滿足(2a﹣c)cosB=bcosC.
(1)求角B的大;
(2)若△ABC的面積為 ,求a+c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐P﹣ABC中,底面ABC是邊長為6的正三角形,PA⊥底面ABC,且PB與底面ABC所成的角為 .
(1)求三棱錐P﹣ABC的體積;
(2)若M是BC的中點,求異面直線PM與AB所成角的大。ńY(jié)果用反三角函數(shù)值表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 的最小正周期為π.
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若a,b,c分別為△ABC的三內(nèi)角A,B,C的對邊,角A是銳角,f(A)=0,a=1,b+c=2,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com